1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
|
import string
import numpy as np
from pandas import (
NA,
DataFrame,
Index,
MultiIndex,
RangeIndex,
Series,
array,
date_range,
)
class GetLoc:
def setup(self):
self.mi_large = MultiIndex.from_product(
[np.arange(1000), np.arange(20), list(string.ascii_letters)],
names=["one", "two", "three"],
)
self.mi_med = MultiIndex.from_product(
[np.arange(1000), np.arange(10), list("A")], names=["one", "two", "three"]
)
self.mi_small = MultiIndex.from_product(
[np.arange(100), list("A"), list("A")], names=["one", "two", "three"]
)
def time_large_get_loc(self):
self.mi_large.get_loc((999, 19, "Z"))
def time_large_get_loc_warm(self):
for _ in range(1000):
self.mi_large.get_loc((999, 19, "Z"))
def time_med_get_loc(self):
self.mi_med.get_loc((999, 9, "A"))
def time_med_get_loc_warm(self):
for _ in range(1000):
self.mi_med.get_loc((999, 9, "A"))
def time_string_get_loc(self):
self.mi_small.get_loc((99, "A", "A"))
def time_small_get_loc_warm(self):
for _ in range(1000):
self.mi_small.get_loc((99, "A", "A"))
class GetLocs:
def setup(self):
self.mi_large = MultiIndex.from_product(
[np.arange(1000), np.arange(20), list(string.ascii_letters)],
names=["one", "two", "three"],
)
self.mi_med = MultiIndex.from_product(
[np.arange(1000), np.arange(10), list("A")], names=["one", "two", "three"]
)
self.mi_small = MultiIndex.from_product(
[np.arange(100), list("A"), list("A")], names=["one", "two", "three"]
)
def time_large_get_locs(self):
self.mi_large.get_locs([999, 19, "Z"])
def time_med_get_locs(self):
self.mi_med.get_locs([999, 9, "A"])
def time_small_get_locs(self):
self.mi_small.get_locs([99, "A", "A"])
class Duplicates:
def setup(self):
size = 65536
arrays = [np.random.randint(0, 8192, size), np.random.randint(0, 1024, size)]
mask = np.random.rand(size) < 0.1
self.mi_unused_levels = MultiIndex.from_arrays(arrays)
self.mi_unused_levels = self.mi_unused_levels[mask]
def time_remove_unused_levels(self):
self.mi_unused_levels.remove_unused_levels()
class Integer:
def setup(self):
self.mi_int = MultiIndex.from_product(
[np.arange(1000), np.arange(1000)], names=["one", "two"]
)
self.obj_index = np.array(
[
(0, 10),
(0, 11),
(0, 12),
(0, 13),
(0, 14),
(0, 15),
(0, 16),
(0, 17),
(0, 18),
(0, 19),
],
dtype=object,
)
self.other_mi_many_mismatches = MultiIndex.from_tuples(
[
(-7, 41),
(-2, 3),
(-0.7, 5),
(0, 0),
(0, 1.5),
(0, 340),
(0, 1001),
(1, -4),
(1, 20),
(1, 1040),
(432, -5),
(432, 17),
(439, 165.5),
(998, -4),
(998, 24065),
(999, 865.2),
(999, 1000),
(1045, -843),
]
)
def time_get_indexer(self):
self.mi_int.get_indexer(self.obj_index)
def time_get_indexer_and_backfill(self):
self.mi_int.get_indexer(self.other_mi_many_mismatches, method="backfill")
def time_get_indexer_and_pad(self):
self.mi_int.get_indexer(self.other_mi_many_mismatches, method="pad")
def time_is_monotonic(self):
self.mi_int.is_monotonic_increasing
class Duplicated:
def setup(self):
n, k = 200, 5000
levels = [
np.arange(n),
Index([f"i-{i}" for i in range(n)], dtype=object).values,
1000 + np.arange(n),
]
codes = [np.random.choice(n, (k * n)) for lev in levels]
self.mi = MultiIndex(levels=levels, codes=codes)
def time_duplicated(self):
self.mi.duplicated()
class Sortlevel:
def setup(self):
n = 1182720
low, high = -4096, 4096
arrs = [
np.repeat(np.random.randint(low, high, (n // k)), k)
for k in [11, 7, 5, 3, 1]
]
self.mi_int = MultiIndex.from_arrays(arrs)[np.random.permutation(n)]
a = np.repeat(np.arange(100), 1000)
b = np.tile(np.arange(1000), 100)
self.mi = MultiIndex.from_arrays([a, b])
self.mi = self.mi.take(np.random.permutation(np.arange(100000)))
def time_sortlevel_int64(self):
self.mi_int.sortlevel()
def time_sortlevel_zero(self):
self.mi.sortlevel(0)
def time_sortlevel_one(self):
self.mi.sortlevel(1)
class SortValues:
params = ["int64", "Int64"]
param_names = ["dtype"]
def setup(self, dtype):
a = array(np.tile(np.arange(100), 1000), dtype=dtype)
b = array(np.tile(np.arange(1000), 100), dtype=dtype)
self.mi = MultiIndex.from_arrays([a, b])
def time_sort_values(self, dtype):
self.mi.sort_values()
class Values:
def setup_cache(self):
level1 = range(1000)
level2 = date_range(start="1/1/2012", periods=100)
mi = MultiIndex.from_product([level1, level2])
return mi
def time_datetime_level_values_copy(self, mi):
mi.copy().values
def time_datetime_level_values_sliced(self, mi):
mi[:10].values
class CategoricalLevel:
def setup(self):
self.df = DataFrame(
{
"a": np.arange(1_000_000, dtype=np.int32),
"b": np.arange(1_000_000, dtype=np.int64),
"c": np.arange(1_000_000, dtype=float),
}
).astype({"a": "category", "b": "category"})
def time_categorical_level(self):
self.df.set_index(["a", "b"])
class Equals:
def setup(self):
idx_large_fast = RangeIndex(100000)
idx_small_slow = date_range(start="1/1/2012", periods=1)
self.mi_large_slow = MultiIndex.from_product([idx_large_fast, idx_small_slow])
self.idx_non_object = RangeIndex(1)
def time_equals_non_object_index(self):
self.mi_large_slow.equals(self.idx_non_object)
class SetOperations:
params = [
("monotonic", "non_monotonic"),
("datetime", "int", "string", "ea_int"),
("intersection", "union", "symmetric_difference"),
(False, None),
]
param_names = ["index_structure", "dtype", "method", "sort"]
def setup(self, index_structure, dtype, method, sort):
N = 10**5
level1 = range(1000)
level2 = date_range(start="1/1/2000", periods=N // 1000)
dates_left = MultiIndex.from_product([level1, level2])
level2 = range(N // 1000)
int_left = MultiIndex.from_product([level1, level2])
level2 = Index([f"i-{i}" for i in range(N // 1000)], dtype=object).values
str_left = MultiIndex.from_product([level1, level2])
level2 = range(N // 1000)
ea_int_left = MultiIndex.from_product([level1, Series(level2, dtype="Int64")])
data = {
"datetime": dates_left,
"int": int_left,
"string": str_left,
"ea_int": ea_int_left,
}
if index_structure == "non_monotonic":
data = {k: mi[::-1] for k, mi in data.items()}
data = {k: {"left": mi, "right": mi[:-1]} for k, mi in data.items()}
self.left = data[dtype]["left"]
self.right = data[dtype]["right"]
def time_operation(self, index_structure, dtype, method, sort):
getattr(self.left, method)(self.right, sort=sort)
class Difference:
params = [
("datetime", "int", "string", "ea_int"),
]
param_names = ["dtype"]
def setup(self, dtype):
N = 10**4 * 2
level1 = range(1000)
level2 = date_range(start="1/1/2000", periods=N // 1000)
dates_left = MultiIndex.from_product([level1, level2])
level2 = range(N // 1000)
int_left = MultiIndex.from_product([level1, level2])
level2 = Series(range(N // 1000), dtype="Int64")
level2[0] = NA
ea_int_left = MultiIndex.from_product([level1, level2])
level2 = Index([f"i-{i}" for i in range(N // 1000)], dtype=object).values
str_left = MultiIndex.from_product([level1, level2])
data = {
"datetime": dates_left,
"int": int_left,
"ea_int": ea_int_left,
"string": str_left,
}
data = {k: {"left": mi, "right": mi[:5]} for k, mi in data.items()}
self.left = data[dtype]["left"]
self.right = data[dtype]["right"]
def time_difference(self, dtype):
self.left.difference(self.right)
class Unique:
params = [
(("Int64", NA), ("int64", 0)),
]
param_names = ["dtype_val"]
def setup(self, dtype_val):
level = Series(
[1, 2, dtype_val[1], dtype_val[1]] + list(range(1_000_000)),
dtype=dtype_val[0],
)
self.midx = MultiIndex.from_arrays([level, level])
level_dups = Series(
[1, 2, dtype_val[1], dtype_val[1]] + list(range(500_000)) * 2,
dtype=dtype_val[0],
)
self.midx_dups = MultiIndex.from_arrays([level_dups, level_dups])
def time_unique(self, dtype_val):
self.midx.unique()
def time_unique_dups(self, dtype_val):
self.midx_dups.unique()
class Isin:
params = [
("string", "int", "datetime"),
]
param_names = ["dtype"]
def setup(self, dtype):
N = 10**5
level1 = range(1000)
level2 = date_range(start="1/1/2000", periods=N // 1000)
dates_midx = MultiIndex.from_product([level1, level2])
level2 = range(N // 1000)
int_midx = MultiIndex.from_product([level1, level2])
level2 = Index([f"i-{i}" for i in range(N // 1000)], dtype=object).values
str_midx = MultiIndex.from_product([level1, level2])
data = {
"datetime": dates_midx,
"int": int_midx,
"string": str_midx,
}
self.midx = data[dtype]
self.values_small = self.midx[:100]
self.values_large = self.midx[100:]
def time_isin_small(self, dtype):
self.midx.isin(self.values_small)
def time_isin_large(self, dtype):
self.midx.isin(self.values_large)
class Putmask:
def setup(self):
N = 10**5
level1 = range(1_000)
level2 = date_range(start="1/1/2000", periods=N // 1000)
self.midx = MultiIndex.from_product([level1, level2])
level1 = range(1_000, 2_000)
self.midx_values = MultiIndex.from_product([level1, level2])
level2 = date_range(start="1/1/2010", periods=N // 1000)
self.midx_values_different = MultiIndex.from_product([level1, level2])
self.mask = np.array([True, False] * (N // 2))
def time_putmask(self):
self.midx.putmask(self.mask, self.midx_values)
def time_putmask_all_different(self):
self.midx.putmask(self.mask, self.midx_values_different)
class Append:
params = ["datetime64[ns]", "int64", "string"]
param_names = ["dtype"]
def setup(self, dtype):
N1 = 1000
N2 = 500
left_level1 = range(N1)
right_level1 = range(N1, N1 + N1)
if dtype == "datetime64[ns]":
level2 = date_range(start="2000-01-01", periods=N2)
elif dtype == "int64":
level2 = range(N2)
elif dtype == "string":
level2 = Index([f"i-{i}" for i in range(N2)], dtype=object)
else:
raise NotImplementedError
self.left = MultiIndex.from_product([left_level1, level2])
self.right = MultiIndex.from_product([right_level1, level2])
def time_append(self, dtype):
self.left.append(self.right)
from .pandas_vb_common import setup # noqa: F401 isort:skip
|