1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
|
.. _compare_with_r:
{{ header }}
Comparison with R / R libraries
*******************************
Since pandas aims to provide a lot of the data manipulation and analysis
functionality that people use `R <https://www.r-project.org/>`__ for, this page
was started to provide a more detailed look at the `R language
<https://en.wikipedia.org/wiki/R_(programming_language)>`__ and its many third
party libraries as they relate to pandas. In comparisons with R and CRAN
libraries, we care about the following things:
* **Functionality / flexibility**: what can/cannot be done with each tool
* **Performance**: how fast are operations. Hard numbers/benchmarks are
preferable
* **Ease-of-use**: Is one tool easier/harder to use (you may have to be
the judge of this, given side-by-side code comparisons)
This page is also here to offer a bit of a translation guide for users of these
R packages.
Quick reference
---------------
We'll start off with a quick reference guide pairing some common R
operations using `dplyr
<https://cran.r-project.org/web/packages/dplyr/index.html>`__ with
pandas equivalents.
Querying, filtering, sampling
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
=========================================== ===========================================
R pandas
=========================================== ===========================================
``dim(df)`` ``df.shape``
``head(df)`` ``df.head()``
``slice(df, 1:10)`` ``df.iloc[:9]``
``filter(df, col1 == 1, col2 == 1)`` ``df.query('col1 == 1 & col2 == 1')``
``df[df$col1 == 1 & df$col2 == 1,]`` ``df[(df.col1 == 1) & (df.col2 == 1)]``
``select(df, col1, col2)`` ``df[['col1', 'col2']]``
``select(df, col1:col3)`` ``df.loc[:, 'col1':'col3']``
``select(df, -(col1:col3))`` ``df.drop(cols_to_drop, axis=1)`` but see [#select_range]_
``distinct(select(df, col1))`` ``df[['col1']].drop_duplicates()``
``distinct(select(df, col1, col2))`` ``df[['col1', 'col2']].drop_duplicates()``
``sample_n(df, 10)`` ``df.sample(n=10)``
``sample_frac(df, 0.01)`` ``df.sample(frac=0.01)``
=========================================== ===========================================
.. [#select_range] R's shorthand for a subrange of columns
(``select(df, col1:col3)``) can be approached
cleanly in pandas, if you have the list of columns,
for example ``df[cols[1:3]]`` or
``df.drop(cols[1:3])``, but doing this by column
name is a bit messy.
Sorting
~~~~~~~
=========================================== ===========================================
R pandas
=========================================== ===========================================
``arrange(df, col1, col2)`` ``df.sort_values(['col1', 'col2'])``
``arrange(df, desc(col1))`` ``df.sort_values('col1', ascending=False)``
=========================================== ===========================================
Transforming
~~~~~~~~~~~~
=========================================== ===========================================
R pandas
=========================================== ===========================================
``select(df, col_one = col1)`` ``df.rename(columns={'col1': 'col_one'})['col_one']``
``rename(df, col_one = col1)`` ``df.rename(columns={'col1': 'col_one'})``
``mutate(df, c=a-b)`` ``df.assign(c=df['a']-df['b'])``
=========================================== ===========================================
Grouping and summarizing
~~~~~~~~~~~~~~~~~~~~~~~~
============================================== ===========================================
R pandas
============================================== ===========================================
``summary(df)`` ``df.describe()``
``gdf <- group_by(df, col1)`` ``gdf = df.groupby('col1')``
``summarise(gdf, avg=mean(col1, na.rm=TRUE))`` ``df.groupby('col1').agg({'col1': 'mean'})``
``summarise(gdf, total=sum(col1))`` ``df.groupby('col1').sum()``
============================================== ===========================================
Base R
------
Slicing with R's |c|_
~~~~~~~~~~~~~~~~~~~~~
R makes it easy to access ``data.frame`` columns by name
.. code-block:: r
df <- data.frame(a=rnorm(5), b=rnorm(5), c=rnorm(5), d=rnorm(5), e=rnorm(5))
df[, c("a", "c", "e")]
or by integer location
.. code-block:: r
df <- data.frame(matrix(rnorm(1000), ncol=100))
df[, c(1:10, 25:30, 40, 50:100)]
Selecting multiple columns by name in pandas is straightforward
.. ipython:: python
df = pd.DataFrame(np.random.randn(10, 3), columns=list("abc"))
df[["a", "c"]]
df.loc[:, ["a", "c"]]
Selecting multiple noncontiguous columns by integer location can be achieved
with a combination of the ``iloc`` indexer attribute and ``numpy.r_``.
.. ipython:: python
named = list("abcdefg")
n = 30
columns = named + np.arange(len(named), n).tolist()
df = pd.DataFrame(np.random.randn(n, n), columns=columns)
df.iloc[:, np.r_[:10, 24:30]]
|aggregate|_
~~~~~~~~~~~~
In R you may want to split data into subsets and compute the mean for each.
Using a data.frame called ``df`` and splitting it into groups ``by1`` and
``by2``:
.. code-block:: r
df <- data.frame(
v1 = c(1,3,5,7,8,3,5,NA,4,5,7,9),
v2 = c(11,33,55,77,88,33,55,NA,44,55,77,99),
by1 = c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12),
by2 = c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA))
aggregate(x=df[, c("v1", "v2")], by=list(mydf2$by1, mydf2$by2), FUN = mean)
The :meth:`~pandas.DataFrame.groupby` method is similar to base R ``aggregate``
function.
.. ipython:: python
df = pd.DataFrame(
{
"v1": [1, 3, 5, 7, 8, 3, 5, np.nan, 4, 5, 7, 9],
"v2": [11, 33, 55, 77, 88, 33, 55, np.nan, 44, 55, 77, 99],
"by1": ["red", "blue", 1, 2, np.nan, "big", 1, 2, "red", 1, np.nan, 12],
"by2": [
"wet",
"dry",
99,
95,
np.nan,
"damp",
95,
99,
"red",
99,
np.nan,
np.nan,
],
}
)
g = df.groupby(["by1", "by2"])
g[["v1", "v2"]].mean()
For more details and examples see :ref:`the groupby documentation
<groupby.split>`.
|match|_
~~~~~~~~~~~~
A common way to select data in R is using ``%in%`` which is defined using the
function ``match``. The operator ``%in%`` is used to return a logical vector
indicating if there is a match or not:
.. code-block:: r
s <- 0:4
s %in% c(2,4)
The :meth:`~pandas.DataFrame.isin` method is similar to R ``%in%`` operator:
.. ipython:: python
s = pd.Series(np.arange(5), dtype=np.float32)
s.isin([2, 4])
The ``match`` function returns a vector of the positions of matches
of its first argument in its second:
.. code-block:: r
s <- 0:4
match(s, c(2,4))
For more details and examples see :ref:`the reshaping documentation
<indexing.basics.indexing_isin>`.
|tapply|_
~~~~~~~~~
``tapply`` is similar to ``aggregate``, but data can be in a ragged array,
since the subclass sizes are possibly irregular. Using a data.frame called
``baseball``, and retrieving information based on the array ``team``:
.. code-block:: r
baseball <-
data.frame(team = gl(5, 5,
labels = paste("Team", LETTERS[1:5])),
player = sample(letters, 25),
batting.average = runif(25, .200, .400))
tapply(baseball$batting.average, baseball.example$team,
max)
In pandas we may use :meth:`~pandas.pivot_table` method to handle this:
.. ipython:: python
import random
import string
random.seed(123456) # for reproducibility
baseball = pd.DataFrame(
{
"team": ["team %d" % (x + 1) for x in range(5)] * 5,
"player": random.sample(list(string.ascii_lowercase), 25),
"batting avg": np.random.uniform(0.200, 0.400, 25),
}
)
baseball.pivot_table(values="batting avg", columns="team", aggfunc="max")
For more details and examples see :ref:`the reshaping documentation
<reshaping.pivot>`.
|subset|_
~~~~~~~~~~
The :meth:`~pandas.DataFrame.query` method is similar to the base R ``subset``
function. In R you might want to get the rows of a ``data.frame`` where one
column's values are less than another column's values:
.. code-block:: r
df <- data.frame(a=rnorm(10), b=rnorm(10))
subset(df, a <= b)
df[df$a <= df$b,] # note the comma
In pandas, there are a few ways to perform subsetting. You can use
:meth:`~pandas.DataFrame.query` or pass an expression as if it were an
index/slice as well as standard boolean indexing:
.. ipython:: python
df = pd.DataFrame({"a": np.random.randn(10), "b": np.random.randn(10)})
df.query("a <= b")
df[df["a"] <= df["b"]]
df.loc[df["a"] <= df["b"]]
For more details and examples see :ref:`the query documentation
<indexing.query>`.
|with|_
~~~~~~~~
An expression using a data.frame called ``df`` in R with the columns ``a`` and
``b`` would be evaluated using ``with`` like so:
.. code-block:: r
df <- data.frame(a=rnorm(10), b=rnorm(10))
with(df, a + b)
df$a + df$b # same as the previous expression
In pandas the equivalent expression, using the
:meth:`~pandas.DataFrame.eval` method, would be:
.. ipython:: python
df = pd.DataFrame({"a": np.random.randn(10), "b": np.random.randn(10)})
df.eval("a + b")
df["a"] + df["b"] # same as the previous expression
In certain cases :meth:`~pandas.DataFrame.eval` will be much faster than
evaluation in pure Python. For more details and examples see :ref:`the eval
documentation <enhancingperf.eval>`.
plyr
----
``plyr`` is an R library for the split-apply-combine strategy for data
analysis. The functions revolve around three data structures in R, ``a``
for ``arrays``, ``l`` for ``lists``, and ``d`` for ``data.frame``. The
table below shows how these data structures could be mapped in Python.
+------------+-------------------------------+
| R | Python |
+============+===============================+
| array | list |
+------------+-------------------------------+
| lists | dictionary or list of objects |
+------------+-------------------------------+
| data.frame | dataframe |
+------------+-------------------------------+
ddply
~~~~~
An expression using a data.frame called ``df`` in R where you want to
summarize ``x`` by ``month``:
.. code-block:: r
require(plyr)
df <- data.frame(
x = runif(120, 1, 168),
y = runif(120, 7, 334),
z = runif(120, 1.7, 20.7),
month = rep(c(5,6,7,8),30),
week = sample(1:4, 120, TRUE)
)
ddply(df, .(month, week), summarize,
mean = round(mean(x), 2),
sd = round(sd(x), 2))
In pandas the equivalent expression, using the
:meth:`~pandas.DataFrame.groupby` method, would be:
.. ipython:: python
df = pd.DataFrame(
{
"x": np.random.uniform(1.0, 168.0, 120),
"y": np.random.uniform(7.0, 334.0, 120),
"z": np.random.uniform(1.7, 20.7, 120),
"month": [5, 6, 7, 8] * 30,
"week": np.random.randint(1, 4, 120),
}
)
grouped = df.groupby(["month", "week"])
grouped["x"].agg(["mean", "std"])
For more details and examples see :ref:`the groupby documentation
<groupby.aggregate>`.
reshape / reshape2
------------------
meltarray
~~~~~~~~~
An expression using a 3 dimensional array called ``a`` in R where you want to
melt it into a data.frame:
.. code-block:: r
a <- array(c(1:23, NA), c(2,3,4))
data.frame(melt(a))
In Python, since ``a`` is a list, you can simply use list comprehension.
.. ipython:: python
a = np.array(list(range(1, 24)) + [np.NAN]).reshape(2, 3, 4)
pd.DataFrame([tuple(list(x) + [val]) for x, val in np.ndenumerate(a)])
meltlist
~~~~~~~~
An expression using a list called ``a`` in R where you want to melt it
into a data.frame:
.. code-block:: r
a <- as.list(c(1:4, NA))
data.frame(melt(a))
In Python, this list would be a list of tuples, so
:meth:`~pandas.DataFrame` method would convert it to a dataframe as required.
.. ipython:: python
a = list(enumerate(list(range(1, 5)) + [np.NAN]))
pd.DataFrame(a)
For more details and examples see :ref:`the Into to Data Structures
documentation <dsintro>`.
meltdf
~~~~~~
An expression using a data.frame called ``cheese`` in R where you want to
reshape the data.frame:
.. code-block:: r
cheese <- data.frame(
first = c('John', 'Mary'),
last = c('Doe', 'Bo'),
height = c(5.5, 6.0),
weight = c(130, 150)
)
melt(cheese, id=c("first", "last"))
In Python, the :meth:`~pandas.melt` method is the R equivalent:
.. ipython:: python
cheese = pd.DataFrame(
{
"first": ["John", "Mary"],
"last": ["Doe", "Bo"],
"height": [5.5, 6.0],
"weight": [130, 150],
}
)
pd.melt(cheese, id_vars=["first", "last"])
cheese.set_index(["first", "last"]).stack(future_stack=True) # alternative way
For more details and examples see :ref:`the reshaping documentation
<reshaping.melt>`.
cast
~~~~
In R ``acast`` is an expression using a data.frame called ``df`` in R to cast
into a higher dimensional array:
.. code-block:: r
df <- data.frame(
x = runif(12, 1, 168),
y = runif(12, 7, 334),
z = runif(12, 1.7, 20.7),
month = rep(c(5,6,7),4),
week = rep(c(1,2), 6)
)
mdf <- melt(df, id=c("month", "week"))
acast(mdf, week ~ month ~ variable, mean)
In Python the best way is to make use of :meth:`~pandas.pivot_table`:
.. ipython:: python
df = pd.DataFrame(
{
"x": np.random.uniform(1.0, 168.0, 12),
"y": np.random.uniform(7.0, 334.0, 12),
"z": np.random.uniform(1.7, 20.7, 12),
"month": [5, 6, 7] * 4,
"week": [1, 2] * 6,
}
)
mdf = pd.melt(df, id_vars=["month", "week"])
pd.pivot_table(
mdf,
values="value",
index=["variable", "week"],
columns=["month"],
aggfunc="mean",
)
Similarly for ``dcast`` which uses a data.frame called ``df`` in R to
aggregate information based on ``Animal`` and ``FeedType``:
.. code-block:: r
df <- data.frame(
Animal = c('Animal1', 'Animal2', 'Animal3', 'Animal2', 'Animal1',
'Animal2', 'Animal3'),
FeedType = c('A', 'B', 'A', 'A', 'B', 'B', 'A'),
Amount = c(10, 7, 4, 2, 5, 6, 2)
)
dcast(df, Animal ~ FeedType, sum, fill=NaN)
# Alternative method using base R
with(df, tapply(Amount, list(Animal, FeedType), sum))
Python can approach this in two different ways. Firstly, similar to above
using :meth:`~pandas.pivot_table`:
.. ipython:: python
df = pd.DataFrame(
{
"Animal": [
"Animal1",
"Animal2",
"Animal3",
"Animal2",
"Animal1",
"Animal2",
"Animal3",
],
"FeedType": ["A", "B", "A", "A", "B", "B", "A"],
"Amount": [10, 7, 4, 2, 5, 6, 2],
}
)
df.pivot_table(values="Amount", index="Animal", columns="FeedType", aggfunc="sum")
The second approach is to use the :meth:`~pandas.DataFrame.groupby` method:
.. ipython:: python
df.groupby(["Animal", "FeedType"])["Amount"].sum()
For more details and examples see :ref:`the reshaping documentation
<reshaping.pivot>` or :ref:`the groupby documentation<groupby.split>`.
|factor|_
~~~~~~~~~
pandas has a data type for categorical data.
.. code-block:: r
cut(c(1,2,3,4,5,6), 3)
factor(c(1,2,3,2,2,3))
In pandas this is accomplished with ``pd.cut`` and ``astype("category")``:
.. ipython:: python
pd.cut(pd.Series([1, 2, 3, 4, 5, 6]), 3)
pd.Series([1, 2, 3, 2, 2, 3]).astype("category")
For more details and examples see :ref:`categorical introduction <categorical>` and the
:ref:`API documentation <api.arrays.categorical>`. There is also a documentation regarding the
:ref:`differences to R's factor <categorical.rfactor>`.
.. |c| replace:: ``c``
.. _c: https://stat.ethz.ch/R-manual/R-patched/library/base/html/c.html
.. |aggregate| replace:: ``aggregate``
.. _aggregate: https://stat.ethz.ch/R-manual/R-patched/library/stats/html/aggregate.html
.. |match| replace:: ``match`` / ``%in%``
.. _match: https://stat.ethz.ch/R-manual/R-patched/library/base/html/match.html
.. |tapply| replace:: ``tapply``
.. _tapply: https://stat.ethz.ch/R-manual/R-patched/library/base/html/tapply.html
.. |with| replace:: ``with``
.. _with: https://stat.ethz.ch/R-manual/R-patched/library/base/html/with.html
.. |subset| replace:: ``subset``
.. _subset: https://stat.ethz.ch/R-manual/R-patched/library/base/html/subset.html
.. |factor| replace:: ``factor``
.. _factor: https://stat.ethz.ch/R-manual/R-devel/library/base/html/factor.html
|