File: test_constructors.py

package info (click to toggle)
pandas 2.3.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 66,800 kB
  • sloc: python: 424,812; ansic: 9,190; sh: 264; xml: 102; makefile: 86
file content (286 lines) | stat: -rw-r--r-- 10,895 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import numpy as np
import pytest

import pandas.util._test_decorators as td
from pandas._libs.sparse import IntIndex

import pandas as pd
from pandas import (
    SparseDtype,
    isna,
)
import pandas._testing as tm
from pandas.core.arrays.sparse import SparseArray


class TestConstructors:
    def test_constructor_dtype(self):
        arr = SparseArray([np.nan, 1, 2, np.nan])
        assert arr.dtype == SparseDtype(np.float64, np.nan)
        assert arr.dtype.subtype == np.float64
        assert np.isnan(arr.fill_value)

        arr = SparseArray([np.nan, 1, 2, np.nan], fill_value=0)
        assert arr.dtype == SparseDtype(np.float64, 0)
        assert arr.fill_value == 0

        arr = SparseArray([0, 1, 2, 4], dtype=np.float64)
        assert arr.dtype == SparseDtype(np.float64, np.nan)
        assert np.isnan(arr.fill_value)

        arr = SparseArray([0, 1, 2, 4], dtype=np.int64)
        assert arr.dtype == SparseDtype(np.int64, 0)
        assert arr.fill_value == 0

        arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=np.int64)
        assert arr.dtype == SparseDtype(np.int64, 0)
        assert arr.fill_value == 0

        arr = SparseArray([0, 1, 2, 4], dtype=None)
        assert arr.dtype == SparseDtype(np.int64, 0)
        assert arr.fill_value == 0

        arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=None)
        assert arr.dtype == SparseDtype(np.int64, 0)
        assert arr.fill_value == 0

    def test_constructor_dtype_str(self):
        result = SparseArray([1, 2, 3], dtype="int")
        expected = SparseArray([1, 2, 3], dtype=int)
        tm.assert_sp_array_equal(result, expected)

    def test_constructor_sparse_dtype(self):
        result = SparseArray([1, 0, 0, 1], dtype=SparseDtype("int64", -1))
        expected = SparseArray([1, 0, 0, 1], fill_value=-1, dtype=np.int64)
        tm.assert_sp_array_equal(result, expected)
        assert result.sp_values.dtype == np.dtype("int64")

    def test_constructor_sparse_dtype_str(self):
        result = SparseArray([1, 0, 0, 1], dtype="Sparse[int32]")
        expected = SparseArray([1, 0, 0, 1], dtype=np.int32)
        tm.assert_sp_array_equal(result, expected)
        assert result.sp_values.dtype == np.dtype("int32")

    def test_constructor_object_dtype(self):
        # GH#11856
        arr = SparseArray(["A", "A", np.nan, "B"], dtype=object)
        assert arr.dtype == SparseDtype(object)
        assert np.isnan(arr.fill_value)

        arr = SparseArray(["A", "A", np.nan, "B"], dtype=object, fill_value="A")
        assert arr.dtype == SparseDtype(object, "A")
        assert arr.fill_value == "A"

    def test_constructor_object_dtype_bool_fill(self):
        # GH#17574
        data = [False, 0, 100.0, 0.0]
        arr = SparseArray(data, dtype=object, fill_value=False)
        assert arr.dtype == SparseDtype(object, False)
        assert arr.fill_value is False
        arr_expected = np.array(data, dtype=object)
        it = (type(x) == type(y) and x == y for x, y in zip(arr, arr_expected))
        assert np.fromiter(it, dtype=np.bool_).all()

    @pytest.mark.parametrize("dtype", [SparseDtype(int, 0), int])
    def test_constructor_na_dtype(self, dtype):
        with pytest.raises(ValueError, match="Cannot convert"):
            SparseArray([0, 1, np.nan], dtype=dtype)

    def test_constructor_warns_when_losing_timezone(self):
        # GH#32501 warn when losing timezone information
        dti = pd.date_range("2016-01-01", periods=3, tz="US/Pacific")

        expected = SparseArray(np.asarray(dti, dtype="datetime64[ns]"))

        with tm.assert_produces_warning(UserWarning):
            result = SparseArray(dti)

        tm.assert_sp_array_equal(result, expected)

        with tm.assert_produces_warning(UserWarning):
            result = SparseArray(pd.Series(dti))

        tm.assert_sp_array_equal(result, expected)

    def test_constructor_spindex_dtype(self):
        arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2]))
        # TODO: actionable?
        # XXX: Behavior change: specifying SparseIndex no longer changes the
        # fill_value
        expected = SparseArray([0, 1, 2, 0], kind="integer")
        tm.assert_sp_array_equal(arr, expected)
        assert arr.dtype == SparseDtype(np.int64)
        assert arr.fill_value == 0

        arr = SparseArray(
            data=[1, 2, 3],
            sparse_index=IntIndex(4, [1, 2, 3]),
            dtype=np.int64,
            fill_value=0,
        )
        exp = SparseArray([0, 1, 2, 3], dtype=np.int64, fill_value=0)
        tm.assert_sp_array_equal(arr, exp)
        assert arr.dtype == SparseDtype(np.int64)
        assert arr.fill_value == 0

        arr = SparseArray(
            data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=np.int64
        )
        exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=np.int64)
        tm.assert_sp_array_equal(arr, exp)
        assert arr.dtype == SparseDtype(np.int64)
        assert arr.fill_value == 0

        arr = SparseArray(
            data=[1, 2, 3],
            sparse_index=IntIndex(4, [1, 2, 3]),
            dtype=None,
            fill_value=0,
        )
        exp = SparseArray([0, 1, 2, 3], dtype=None)
        tm.assert_sp_array_equal(arr, exp)
        assert arr.dtype == SparseDtype(np.int64)
        assert arr.fill_value == 0

    @pytest.mark.parametrize("sparse_index", [None, IntIndex(1, [0])])
    def test_constructor_spindex_dtype_scalar(self, sparse_index):
        # scalar input
        msg = "Constructing SparseArray with scalar data is deprecated"
        with tm.assert_produces_warning(FutureWarning, match=msg):
            arr = SparseArray(data=1, sparse_index=sparse_index, dtype=None)
        exp = SparseArray([1], dtype=None)
        tm.assert_sp_array_equal(arr, exp)
        assert arr.dtype == SparseDtype(np.int64)
        assert arr.fill_value == 0

        with tm.assert_produces_warning(FutureWarning, match=msg):
            arr = SparseArray(data=1, sparse_index=IntIndex(1, [0]), dtype=None)
        exp = SparseArray([1], dtype=None)
        tm.assert_sp_array_equal(arr, exp)
        assert arr.dtype == SparseDtype(np.int64)
        assert arr.fill_value == 0

    def test_constructor_spindex_dtype_scalar_broadcasts(self):
        arr = SparseArray(
            data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=None
        )
        exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=None)
        tm.assert_sp_array_equal(arr, exp)
        assert arr.dtype == SparseDtype(np.int64)
        assert arr.fill_value == 0

    @pytest.mark.parametrize(
        "data, fill_value",
        [
            (np.array([1, 2]), 0),
            (np.array([1.0, 2.0]), np.nan),
            ([True, False], False),
            ([pd.Timestamp("2017-01-01")], pd.NaT),
        ],
    )
    def test_constructor_inferred_fill_value(self, data, fill_value):
        result = SparseArray(data).fill_value

        if isna(fill_value):
            assert isna(result)
        else:
            assert result == fill_value

    @pytest.mark.parametrize("format", ["coo", "csc", "csr"])
    @pytest.mark.parametrize("size", [0, 10])
    def test_from_spmatrix(self, size, format):
        sp_sparse = td.versioned_importorskip("scipy.sparse")

        mat = sp_sparse.random(size, 1, density=0.5, format=format)
        result = SparseArray.from_spmatrix(mat)

        result = np.asarray(result)
        expected = mat.toarray().ravel()
        tm.assert_numpy_array_equal(result, expected)

    @pytest.mark.parametrize("format", ["coo", "csc", "csr"])
    def test_from_spmatrix_including_explicit_zero(self, format):
        sp_sparse = td.versioned_importorskip("scipy.sparse")

        mat = sp_sparse.random(10, 1, density=0.5, format=format)
        mat.data[0] = 0
        result = SparseArray.from_spmatrix(mat)

        result = np.asarray(result)
        expected = mat.toarray().ravel()
        tm.assert_numpy_array_equal(result, expected)

    def test_from_spmatrix_raises(self):
        sp_sparse = td.versioned_importorskip("scipy.sparse")

        mat = sp_sparse.eye(5, 4, format="csc")

        with pytest.raises(ValueError, match="not '4'"):
            SparseArray.from_spmatrix(mat)

    def test_constructor_from_too_large_array(self):
        with pytest.raises(TypeError, match="expected dimension <= 1 data"):
            SparseArray(np.arange(10).reshape((2, 5)))

    def test_constructor_from_sparse(self):
        zarr = SparseArray([0, 0, 1, 2, 3, 0, 4, 5, 0, 6], fill_value=0)
        res = SparseArray(zarr)
        assert res.fill_value == 0
        tm.assert_almost_equal(res.sp_values, zarr.sp_values)

    def test_constructor_copy(self):
        arr_data = np.array([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6])
        arr = SparseArray(arr_data)

        cp = SparseArray(arr, copy=True)
        cp.sp_values[:3] = 0
        assert not (arr.sp_values[:3] == 0).any()

        not_copy = SparseArray(arr)
        not_copy.sp_values[:3] = 0
        assert (arr.sp_values[:3] == 0).all()

    def test_constructor_bool(self):
        # GH#10648
        data = np.array([False, False, True, True, False, False])
        arr = SparseArray(data, fill_value=False, dtype=bool)

        assert arr.dtype == SparseDtype(bool)
        tm.assert_numpy_array_equal(arr.sp_values, np.array([True, True]))
        # Behavior change: np.asarray densifies.
        # tm.assert_numpy_array_equal(arr.sp_values, np.asarray(arr))
        tm.assert_numpy_array_equal(arr.sp_index.indices, np.array([2, 3], np.int32))

        dense = arr.to_dense()
        assert dense.dtype == bool
        tm.assert_numpy_array_equal(dense, data)

    def test_constructor_bool_fill_value(self):
        arr = SparseArray([True, False, True], dtype=None)
        assert arr.dtype == SparseDtype(np.bool_)
        assert not arr.fill_value

        arr = SparseArray([True, False, True], dtype=np.bool_)
        assert arr.dtype == SparseDtype(np.bool_)
        assert not arr.fill_value

        arr = SparseArray([True, False, True], dtype=np.bool_, fill_value=True)
        assert arr.dtype == SparseDtype(np.bool_, True)
        assert arr.fill_value

    def test_constructor_float32(self):
        # GH#10648
        data = np.array([1.0, np.nan, 3], dtype=np.float32)
        arr = SparseArray(data, dtype=np.float32)

        assert arr.dtype == SparseDtype(np.float32)
        tm.assert_numpy_array_equal(arr.sp_values, np.array([1, 3], dtype=np.float32))
        # Behavior change: np.asarray densifies.
        # tm.assert_numpy_array_equal(arr.sp_values, np.asarray(arr))
        tm.assert_numpy_array_equal(
            arr.sp_index.indices, np.array([0, 2], dtype=np.int32)
        )

        dense = arr.to_dense()
        assert dense.dtype == np.float32
        tm.assert_numpy_array_equal(dense, data)