File: test_reductions.py

package info (click to toggle)
pandas 2.3.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 66,800 kB
  • sloc: python: 424,812; ansic: 9,190; sh: 264; xml: 102; makefile: 86
file content (306 lines) | stat: -rw-r--r-- 9,721 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import numpy as np
import pytest

from pandas import (
    NaT,
    SparseDtype,
    Timestamp,
    isna,
)
from pandas.core.arrays.sparse import SparseArray


class TestReductions:
    @pytest.mark.parametrize(
        "data,pos,neg",
        [
            ([True, True, True], True, False),
            ([1, 2, 1], 1, 0),
            ([1.0, 2.0, 1.0], 1.0, 0.0),
        ],
    )
    def test_all(self, data, pos, neg):
        # GH#17570
        out = SparseArray(data).all()
        assert out

        out = SparseArray(data, fill_value=pos).all()
        assert out

        data[1] = neg
        out = SparseArray(data).all()
        assert not out

        out = SparseArray(data, fill_value=pos).all()
        assert not out

    @pytest.mark.parametrize(
        "data,pos,neg",
        [
            ([True, True, True], True, False),
            ([1, 2, 1], 1, 0),
            ([1.0, 2.0, 1.0], 1.0, 0.0),
        ],
    )
    def test_numpy_all(self, data, pos, neg):
        # GH#17570
        out = np.all(SparseArray(data))
        assert out

        out = np.all(SparseArray(data, fill_value=pos))
        assert out

        data[1] = neg
        out = np.all(SparseArray(data))
        assert not out

        out = np.all(SparseArray(data, fill_value=pos))
        assert not out

        # raises with a different message on py2.
        msg = "the 'out' parameter is not supported"
        with pytest.raises(ValueError, match=msg):
            np.all(SparseArray(data), out=np.array([]))

    @pytest.mark.parametrize(
        "data,pos,neg",
        [
            ([False, True, False], True, False),
            ([0, 2, 0], 2, 0),
            ([0.0, 2.0, 0.0], 2.0, 0.0),
        ],
    )
    def test_any(self, data, pos, neg):
        # GH#17570
        out = SparseArray(data).any()
        assert out

        out = SparseArray(data, fill_value=pos).any()
        assert out

        data[1] = neg
        out = SparseArray(data).any()
        assert not out

        out = SparseArray(data, fill_value=pos).any()
        assert not out

    @pytest.mark.parametrize(
        "data,pos,neg",
        [
            ([False, True, False], True, False),
            ([0, 2, 0], 2, 0),
            ([0.0, 2.0, 0.0], 2.0, 0.0),
        ],
    )
    def test_numpy_any(self, data, pos, neg):
        # GH#17570
        out = np.any(SparseArray(data))
        assert out

        out = np.any(SparseArray(data, fill_value=pos))
        assert out

        data[1] = neg
        out = np.any(SparseArray(data))
        assert not out

        out = np.any(SparseArray(data, fill_value=pos))
        assert not out

        msg = "the 'out' parameter is not supported"
        with pytest.raises(ValueError, match=msg):
            np.any(SparseArray(data), out=out)

    def test_sum(self):
        data = np.arange(10).astype(float)
        out = SparseArray(data).sum()
        assert out == 45.0

        data[5] = np.nan
        out = SparseArray(data, fill_value=2).sum()
        assert out == 40.0

        out = SparseArray(data, fill_value=np.nan).sum()
        assert out == 40.0

    @pytest.mark.parametrize(
        "arr",
        [np.array([0, 1, np.nan, 1]), np.array([0, 1, 1])],
    )
    @pytest.mark.parametrize("fill_value", [0, 1, np.nan])
    @pytest.mark.parametrize("min_count, expected", [(3, 2), (4, np.nan)])
    def test_sum_min_count(self, arr, fill_value, min_count, expected):
        # GH#25777
        sparray = SparseArray(arr, fill_value=fill_value)
        result = sparray.sum(min_count=min_count)
        if np.isnan(expected):
            assert np.isnan(result)
        else:
            assert result == expected

    def test_bool_sum_min_count(self):
        spar_bool = SparseArray([False, True] * 5, dtype=np.bool_, fill_value=True)
        res = spar_bool.sum(min_count=1)
        assert res == 5
        res = spar_bool.sum(min_count=11)
        assert isna(res)

    def test_numpy_sum(self):
        data = np.arange(10).astype(float)
        out = np.sum(SparseArray(data))
        assert out == 45.0

        data[5] = np.nan
        out = np.sum(SparseArray(data, fill_value=2))
        assert out == 40.0

        out = np.sum(SparseArray(data, fill_value=np.nan))
        assert out == 40.0

        msg = "the 'dtype' parameter is not supported"
        with pytest.raises(ValueError, match=msg):
            np.sum(SparseArray(data), dtype=np.int64)

        msg = "the 'out' parameter is not supported"
        with pytest.raises(ValueError, match=msg):
            np.sum(SparseArray(data), out=out)

    def test_mean(self):
        data = np.arange(10).astype(float)
        out = SparseArray(data).mean()
        assert out == 4.5

        data[5] = np.nan
        out = SparseArray(data).mean()
        assert out == 40.0 / 9

    def test_numpy_mean(self):
        data = np.arange(10).astype(float)
        out = np.mean(SparseArray(data))
        assert out == 4.5

        data[5] = np.nan
        out = np.mean(SparseArray(data))
        assert out == 40.0 / 9

        msg = "the 'dtype' parameter is not supported"
        with pytest.raises(ValueError, match=msg):
            np.mean(SparseArray(data), dtype=np.int64)

        msg = "the 'out' parameter is not supported"
        with pytest.raises(ValueError, match=msg):
            np.mean(SparseArray(data), out=out)


class TestMinMax:
    @pytest.mark.parametrize(
        "raw_data,max_expected,min_expected",
        [
            (np.arange(5.0), [4], [0]),
            (-np.arange(5.0), [0], [-4]),
            (np.array([0, 1, 2, np.nan, 4]), [4], [0]),
            (np.array([np.nan] * 5), [np.nan], [np.nan]),
            (np.array([]), [np.nan], [np.nan]),
        ],
    )
    def test_nan_fill_value(self, raw_data, max_expected, min_expected):
        arr = SparseArray(raw_data)
        max_result = arr.max()
        min_result = arr.min()
        assert max_result in max_expected
        assert min_result in min_expected

        max_result = arr.max(skipna=False)
        min_result = arr.min(skipna=False)
        if np.isnan(raw_data).any():
            assert np.isnan(max_result)
            assert np.isnan(min_result)
        else:
            assert max_result in max_expected
            assert min_result in min_expected

    @pytest.mark.parametrize(
        "fill_value,max_expected,min_expected",
        [
            (100, 100, 0),
            (-100, 1, -100),
        ],
    )
    def test_fill_value(self, fill_value, max_expected, min_expected):
        arr = SparseArray(
            np.array([fill_value, 0, 1]), dtype=SparseDtype("int", fill_value)
        )
        max_result = arr.max()
        assert max_result == max_expected

        min_result = arr.min()
        assert min_result == min_expected

    def test_only_fill_value(self):
        fv = 100
        arr = SparseArray(np.array([fv, fv, fv]), dtype=SparseDtype("int", fv))
        assert len(arr._valid_sp_values) == 0

        assert arr.max() == fv
        assert arr.min() == fv
        assert arr.max(skipna=False) == fv
        assert arr.min(skipna=False) == fv

    @pytest.mark.parametrize("func", ["min", "max"])
    @pytest.mark.parametrize("data", [np.array([]), np.array([np.nan, np.nan])])
    @pytest.mark.parametrize(
        "dtype,expected",
        [
            (SparseDtype(np.float64, np.nan), np.nan),
            (SparseDtype(np.float64, 5.0), np.nan),
            (SparseDtype("datetime64[ns]", NaT), NaT),
            (SparseDtype("datetime64[ns]", Timestamp("2018-05-05")), NaT),
        ],
    )
    def test_na_value_if_no_valid_values(self, func, data, dtype, expected):
        arr = SparseArray(data, dtype=dtype)
        result = getattr(arr, func)()
        if expected is NaT:
            # TODO: pin down whether we wrap datetime64("NaT")
            assert result is NaT or np.isnat(result)
        else:
            assert np.isnan(result)


class TestArgmaxArgmin:
    @pytest.mark.parametrize(
        "arr,argmax_expected,argmin_expected",
        [
            (SparseArray([1, 2, 0, 1, 2]), 1, 2),
            (SparseArray([-1, -2, 0, -1, -2]), 2, 1),
            (SparseArray([np.nan, 1, 0, 0, np.nan, -1]), 1, 5),
            (SparseArray([np.nan, 1, 0, 0, np.nan, 2]), 5, 2),
            (SparseArray([np.nan, 1, 0, 0, np.nan, 2], fill_value=-1), 5, 2),
            (SparseArray([np.nan, 1, 0, 0, np.nan, 2], fill_value=0), 5, 2),
            (SparseArray([np.nan, 1, 0, 0, np.nan, 2], fill_value=1), 5, 2),
            (SparseArray([np.nan, 1, 0, 0, np.nan, 2], fill_value=2), 5, 2),
            (SparseArray([np.nan, 1, 0, 0, np.nan, 2], fill_value=3), 5, 2),
            (SparseArray([0] * 10 + [-1], fill_value=0), 0, 10),
            (SparseArray([0] * 10 + [-1], fill_value=-1), 0, 10),
            (SparseArray([0] * 10 + [-1], fill_value=1), 0, 10),
            (SparseArray([-1] + [0] * 10, fill_value=0), 1, 0),
            (SparseArray([1] + [0] * 10, fill_value=0), 0, 1),
            (SparseArray([-1] + [0] * 10, fill_value=-1), 1, 0),
            (SparseArray([1] + [0] * 10, fill_value=1), 0, 1),
        ],
    )
    def test_argmax_argmin(self, arr, argmax_expected, argmin_expected):
        argmax_result = arr.argmax()
        argmin_result = arr.argmin()
        assert argmax_result == argmax_expected
        assert argmin_result == argmin_expected

    @pytest.mark.parametrize(
        "arr,method",
        [(SparseArray([]), "argmax"), (SparseArray([]), "argmin")],
    )
    def test_empty_array(self, arr, method):
        msg = f"attempt to get {method} of an empty sequence"
        with pytest.raises(ValueError, match=msg):
            arr.argmax() if method == "argmax" else arr.argmin()