File: test_string.py

package info (click to toggle)
pandas 2.3.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 66,800 kB
  • sloc: python: 424,812; ansic: 9,190; sh: 264; xml: 102; makefile: 86
file content (854 lines) | stat: -rw-r--r-- 29,267 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
"""
This module tests the functionality of StringArray and ArrowStringArray.
Tests for the str accessors are in pandas/tests/strings/test_string_array.py
"""
import operator

import numpy as np
import pytest

from pandas._config import using_string_dtype

from pandas.compat import HAS_PYARROW
from pandas.compat.pyarrow import (
    pa_version_under12p0,
    pa_version_under19p0,
)
import pandas.util._test_decorators as td

from pandas.core.dtypes.common import is_dtype_equal

import pandas as pd
import pandas._testing as tm
from pandas.core.arrays.string_ import StringArrayNumpySemantics
from pandas.core.arrays.string_arrow import (
    ArrowStringArray,
    ArrowStringArrayNumpySemantics,
)


@pytest.fixture
def dtype(string_dtype_arguments):
    """Fixture giving StringDtype from parametrized storage and na_value arguments"""
    storage, na_value = string_dtype_arguments
    return pd.StringDtype(storage=storage, na_value=na_value)


@pytest.fixture
def dtype2(string_dtype_arguments2):
    storage, na_value = string_dtype_arguments2
    return pd.StringDtype(storage=storage, na_value=na_value)


@pytest.fixture
def cls(dtype):
    """Fixture giving array type from parametrized 'dtype'"""
    return dtype.construct_array_type()


def string_dtype_highest_priority(dtype1, dtype2):
    if HAS_PYARROW:
        DTYPE_HIERARCHY = [
            pd.StringDtype("python", na_value=np.nan),
            pd.StringDtype("pyarrow", na_value=np.nan),
            pd.StringDtype("python", na_value=pd.NA),
            pd.StringDtype("pyarrow", na_value=pd.NA),
        ]
    else:
        DTYPE_HIERARCHY = [
            pd.StringDtype("python", na_value=np.nan),
            pd.StringDtype("python", na_value=pd.NA),
        ]

    h1 = DTYPE_HIERARCHY.index(dtype1)
    h2 = DTYPE_HIERARCHY.index(dtype2)
    return DTYPE_HIERARCHY[max(h1, h2)]


def test_dtype_constructor():
    td.versioned_importorskip("pyarrow")

    with tm.assert_produces_warning(FutureWarning):
        dtype = pd.StringDtype("pyarrow_numpy")
    assert dtype == pd.StringDtype("pyarrow", na_value=np.nan)


def test_dtype_equality():
    td.versioned_importorskip("pyarrow")

    dtype1 = pd.StringDtype("python")
    dtype2 = pd.StringDtype("pyarrow")
    dtype3 = pd.StringDtype("pyarrow", na_value=np.nan)

    assert dtype1 == pd.StringDtype("python", na_value=pd.NA)
    assert dtype1 != dtype2
    assert dtype1 != dtype3

    assert dtype2 == pd.StringDtype("pyarrow", na_value=pd.NA)
    assert dtype2 != dtype1
    assert dtype2 != dtype3

    assert dtype3 == pd.StringDtype("pyarrow", na_value=np.nan)
    assert dtype3 == pd.StringDtype("pyarrow", na_value=float("nan"))
    assert dtype3 != dtype1
    assert dtype3 != dtype2


def test_repr(dtype):
    df = pd.DataFrame({"A": pd.array(["a", pd.NA, "b"], dtype=dtype)})
    if dtype.na_value is np.nan:
        expected = "     A\n0    a\n1  NaN\n2    b"
    else:
        expected = "      A\n0     a\n1  <NA>\n2     b"
    assert repr(df) == expected

    if dtype.na_value is np.nan:
        expected = "0      a\n1    NaN\n2      b\nName: A, dtype: str"
    else:
        expected = "0       a\n1    <NA>\n2       b\nName: A, dtype: string"
    assert repr(df.A) == expected

    if dtype.storage == "pyarrow" and dtype.na_value is pd.NA:
        arr_name = "ArrowStringArray"
        expected = f"<{arr_name}>\n['a', <NA>, 'b']\nLength: 3, dtype: string"
    elif dtype.storage == "pyarrow" and dtype.na_value is np.nan:
        arr_name = "ArrowStringArrayNumpySemantics"
        expected = f"<{arr_name}>\n['a', nan, 'b']\nLength: 3, dtype: str"
    elif dtype.storage == "python" and dtype.na_value is np.nan:
        arr_name = "StringArrayNumpySemantics"
        expected = f"<{arr_name}>\n['a', nan, 'b']\nLength: 3, dtype: str"
    else:
        arr_name = "StringArray"
        expected = f"<{arr_name}>\n['a', <NA>, 'b']\nLength: 3, dtype: string"
    assert repr(df.A.array) == expected


def test_none_to_nan(cls, dtype):
    a = cls._from_sequence(["a", None, "b"], dtype=dtype)
    assert a[1] is not None
    assert a[1] is a.dtype.na_value


def test_setitem_validates(cls, dtype):
    arr = cls._from_sequence(["a", "b"], dtype=dtype)

    msg = "Invalid value '10' for dtype 'str"
    with pytest.raises(TypeError, match=msg):
        arr[0] = 10

    msg = "Invalid value for dtype 'str"
    with pytest.raises(TypeError, match=msg):
        arr[:] = np.array([1, 2])


def test_setitem_with_scalar_string(dtype):
    # is_float_dtype considers some strings, like 'd', to be floats
    # which can cause issues.
    arr = pd.array(["a", "c"], dtype=dtype)
    arr[0] = "d"
    expected = pd.array(["d", "c"], dtype=dtype)
    tm.assert_extension_array_equal(arr, expected)


def test_setitem_with_array_with_missing(dtype):
    # ensure that when setting with an array of values, we don't mutate the
    # array `value` in __setitem__(self, key, value)
    arr = pd.array(["a", "b", "c"], dtype=dtype)
    value = np.array(["A", None])
    value_orig = value.copy()
    arr[[0, 1]] = value

    expected = pd.array(["A", pd.NA, "c"], dtype=dtype)
    tm.assert_extension_array_equal(arr, expected)
    tm.assert_numpy_array_equal(value, value_orig)


def test_astype_roundtrip(dtype):
    ser = pd.Series(pd.date_range("2000", periods=12))
    ser[0] = None

    casted = ser.astype(dtype)
    assert is_dtype_equal(casted.dtype, dtype)

    result = casted.astype("datetime64[ns]")
    tm.assert_series_equal(result, ser)

    # GH#38509 same thing for timedelta64
    ser2 = ser - ser.iloc[-1]
    casted2 = ser2.astype(dtype)
    assert is_dtype_equal(casted2.dtype, dtype)

    result2 = casted2.astype(ser2.dtype)
    tm.assert_series_equal(result2, ser2)


def test_add(dtype):
    a = pd.Series(["a", "b", "c", None, None], dtype=dtype)
    b = pd.Series(["x", "y", None, "z", None], dtype=dtype)

    result = a + b
    expected = pd.Series(["ax", "by", None, None, None], dtype=dtype)
    tm.assert_series_equal(result, expected)

    result = a.add(b)
    tm.assert_series_equal(result, expected)

    result = a.radd(b)
    expected = pd.Series(["xa", "yb", None, None, None], dtype=dtype)
    tm.assert_series_equal(result, expected)

    result = a.add(b, fill_value="-")
    expected = pd.Series(["ax", "by", "c-", "-z", None], dtype=dtype)
    tm.assert_series_equal(result, expected)


def test_add_2d(dtype, request):
    if dtype.storage == "pyarrow":
        reason = "Failed: DID NOT RAISE <class 'ValueError'>"
        mark = pytest.mark.xfail(raises=None, reason=reason)
        request.applymarker(mark)

    a = pd.array(["a", "b", "c"], dtype=dtype)
    b = np.array([["a", "b", "c"]], dtype=object)
    with pytest.raises(ValueError, match="3 != 1"):
        a + b

    s = pd.Series(a)
    with pytest.raises(ValueError, match="3 != 1"):
        s + b


def test_add_sequence(dtype):
    a = pd.array(["a", "b", None, None], dtype=dtype)
    other = ["x", None, "y", None]

    result = a + other
    expected = pd.array(["ax", None, None, None], dtype=dtype)
    tm.assert_extension_array_equal(result, expected)

    result = other + a
    expected = pd.array(["xa", None, None, None], dtype=dtype)
    tm.assert_extension_array_equal(result, expected)


def test_mul(dtype):
    a = pd.array(["a", "b", None], dtype=dtype)
    result = a * 2
    expected = pd.array(["aa", "bb", None], dtype=dtype)
    tm.assert_extension_array_equal(result, expected)

    result = 2 * a
    tm.assert_extension_array_equal(result, expected)


@pytest.mark.xfail(reason="GH-28527")
def test_add_strings(dtype):
    arr = pd.array(["a", "b", "c", "d"], dtype=dtype)
    df = pd.DataFrame([["t", "y", "v", "w"]], dtype=object)
    assert arr.__add__(df) is NotImplemented

    result = arr + df
    expected = pd.DataFrame([["at", "by", "cv", "dw"]]).astype(dtype)
    tm.assert_frame_equal(result, expected)

    result = df + arr
    expected = pd.DataFrame([["ta", "yb", "vc", "wd"]]).astype(dtype)
    tm.assert_frame_equal(result, expected)


@pytest.mark.xfail(reason="GH-28527")
def test_add_frame(dtype):
    arr = pd.array(["a", "b", np.nan, np.nan], dtype=dtype)
    df = pd.DataFrame([["x", np.nan, "y", np.nan]])

    assert arr.__add__(df) is NotImplemented

    result = arr + df
    expected = pd.DataFrame([["ax", np.nan, np.nan, np.nan]]).astype(dtype)
    tm.assert_frame_equal(result, expected)

    result = df + arr
    expected = pd.DataFrame([["xa", np.nan, np.nan, np.nan]]).astype(dtype)
    tm.assert_frame_equal(result, expected)


def test_comparison_methods_scalar(comparison_op, dtype):
    op_name = f"__{comparison_op.__name__}__"
    a = pd.array(["a", None, "c"], dtype=dtype)
    other = "a"
    result = getattr(a, op_name)(other)
    if dtype.na_value is np.nan:
        expected = np.array([getattr(item, op_name)(other) for item in a])
        if comparison_op == operator.ne:
            expected[1] = True
        else:
            expected[1] = False
        tm.assert_numpy_array_equal(result, expected.astype(np.bool_))
    else:
        expected_dtype = "boolean[pyarrow]" if dtype.storage == "pyarrow" else "boolean"
        expected = np.array([getattr(item, op_name)(other) for item in a], dtype=object)
        expected = pd.array(expected, dtype=expected_dtype)
        tm.assert_extension_array_equal(result, expected)


def test_comparison_methods_scalar_pd_na(comparison_op, dtype):
    op_name = f"__{comparison_op.__name__}__"
    a = pd.array(["a", None, "c"], dtype=dtype)
    result = getattr(a, op_name)(pd.NA)

    if dtype.na_value is np.nan:
        if operator.ne == comparison_op:
            expected = np.array([True, True, True])
        else:
            expected = np.array([False, False, False])
        tm.assert_numpy_array_equal(result, expected)
    else:
        expected_dtype = "boolean[pyarrow]" if dtype.storage == "pyarrow" else "boolean"
        expected = pd.array([None, None, None], dtype=expected_dtype)
        tm.assert_extension_array_equal(result, expected)
        tm.assert_extension_array_equal(result, expected)


def test_comparison_methods_scalar_not_string(comparison_op, dtype):
    op_name = f"__{comparison_op.__name__}__"

    a = pd.array(["a", None, "c"], dtype=dtype)
    other = 42

    if op_name not in ["__eq__", "__ne__"]:
        with pytest.raises(TypeError, match="Invalid comparison|not supported between"):
            getattr(a, op_name)(other)

        return

    result = getattr(a, op_name)(other)

    if dtype.na_value is np.nan:
        expected_data = {
            "__eq__": [False, False, False],
            "__ne__": [True, True, True],
        }[op_name]
        expected = np.array(expected_data)
        tm.assert_numpy_array_equal(result, expected)
    else:
        expected_data = {"__eq__": [False, None, False], "__ne__": [True, None, True]}[
            op_name
        ]
        expected_dtype = "boolean[pyarrow]" if dtype.storage == "pyarrow" else "boolean"
        expected = pd.array(expected_data, dtype=expected_dtype)
        tm.assert_extension_array_equal(result, expected)


def test_comparison_methods_array(comparison_op, dtype, dtype2):
    op_name = f"__{comparison_op.__name__}__"

    a = pd.array(["a", None, "c"], dtype=dtype)
    other = pd.array([None, None, "c"], dtype=dtype2)
    result = comparison_op(a, other)

    # ensure operation is commutative
    result2 = comparison_op(other, a)
    tm.assert_equal(result, result2)

    if dtype.na_value is np.nan and dtype2.na_value is np.nan:
        if operator.ne == comparison_op:
            expected = np.array([True, True, False])
        else:
            expected = np.array([False, False, False])
            expected[-1] = getattr(other[-1], op_name)(a[-1])
        tm.assert_numpy_array_equal(result, expected)

    else:
        max_dtype = string_dtype_highest_priority(dtype, dtype2)
        if max_dtype.storage == "python":
            expected_dtype = "boolean"
        else:
            expected_dtype = "bool[pyarrow]"

        expected = np.full(len(a), fill_value=None, dtype="object")
        expected[-1] = getattr(other[-1], op_name)(a[-1])
        expected = pd.array(expected, dtype=expected_dtype)
        tm.assert_extension_array_equal(result, expected)


@td.skip_if_no("pyarrow")
def test_comparison_methods_array_arrow_extension(comparison_op, dtype2):
    # Test pd.ArrowDtype(pa.string()) against other string arrays
    import pyarrow as pa

    op_name = f"__{comparison_op.__name__}__"
    dtype = pd.ArrowDtype(pa.string())
    a = pd.array(["a", None, "c"], dtype=dtype)
    other = pd.array([None, None, "c"], dtype=dtype2)
    result = comparison_op(a, other)

    # ensure operation is commutative
    result2 = comparison_op(other, a)
    tm.assert_equal(result, result2)

    expected = pd.array([None, None, True], dtype="bool[pyarrow]")
    expected[-1] = getattr(other[-1], op_name)(a[-1])
    tm.assert_extension_array_equal(result, expected)


def test_comparison_methods_list(comparison_op, dtype):
    op_name = f"__{comparison_op.__name__}__"

    a = pd.array(["a", None, "c"], dtype=dtype)
    other = [None, None, "c"]
    result = comparison_op(a, other)

    # ensure operation is commutative
    result2 = comparison_op(other, a)
    tm.assert_equal(result, result2)

    if dtype.na_value is np.nan:
        if operator.ne == comparison_op:
            expected = np.array([True, True, False])
        else:
            expected = np.array([False, False, False])
            expected[-1] = getattr(other[-1], op_name)(a[-1])
        tm.assert_numpy_array_equal(result, expected)

    else:
        expected_dtype = "boolean[pyarrow]" if dtype.storage == "pyarrow" else "boolean"
        expected = np.full(len(a), fill_value=None, dtype="object")
        expected[-1] = getattr(other[-1], op_name)(a[-1])
        expected = pd.array(expected, dtype=expected_dtype)
        tm.assert_extension_array_equal(result, expected)


def test_constructor_raises(cls):
    if cls is pd.arrays.StringArray:
        msg = "StringArray requires a sequence of strings or pandas.NA"
    elif cls is StringArrayNumpySemantics:
        msg = "StringArrayNumpySemantics requires a sequence of strings or NaN"
    else:
        msg = "Unsupported type '<class 'numpy.ndarray'>' for ArrowExtensionArray"

    with pytest.raises(ValueError, match=msg):
        cls(np.array(["a", "b"], dtype="S1"))

    with pytest.raises(ValueError, match=msg):
        cls(np.array([]))

    if cls is pd.arrays.StringArray or cls is StringArrayNumpySemantics:
        # GH#45057 np.nan and None do NOT raise, as they are considered valid NAs
        #  for string dtype
        cls(np.array(["a", np.nan], dtype=object))
        cls(np.array(["a", None], dtype=object))
    else:
        with pytest.raises(ValueError, match=msg):
            cls(np.array(["a", np.nan], dtype=object))
        with pytest.raises(ValueError, match=msg):
            cls(np.array(["a", None], dtype=object))

    with pytest.raises(ValueError, match=msg):
        cls(np.array(["a", pd.NaT], dtype=object))

    with pytest.raises(ValueError, match=msg):
        cls(np.array(["a", np.datetime64("NaT", "ns")], dtype=object))

    with pytest.raises(ValueError, match=msg):
        cls(np.array(["a", np.timedelta64("NaT", "ns")], dtype=object))


@pytest.mark.parametrize("na", [np.nan, np.float64("nan"), float("nan"), None, pd.NA])
def test_constructor_nan_like(na):
    expected = pd.arrays.StringArray(np.array(["a", pd.NA]))
    tm.assert_extension_array_equal(
        pd.arrays.StringArray(np.array(["a", na], dtype="object")), expected
    )


@pytest.mark.parametrize("copy", [True, False])
def test_from_sequence_no_mutate(copy, cls, dtype):
    nan_arr = np.array(["a", np.nan], dtype=object)
    expected_input = nan_arr.copy()
    na_arr = np.array(["a", pd.NA], dtype=object)

    result = cls._from_sequence(nan_arr, dtype=dtype, copy=copy)

    if cls in (ArrowStringArray, ArrowStringArrayNumpySemantics):
        import pyarrow as pa

        expected = cls(pa.array(na_arr, type=pa.string(), from_pandas=True))
    elif cls is StringArrayNumpySemantics:
        expected = cls(nan_arr)
    else:
        expected = cls(na_arr)

    tm.assert_extension_array_equal(result, expected)
    tm.assert_numpy_array_equal(nan_arr, expected_input)


def test_astype_int(dtype):
    arr = pd.array(["1", "2", "3"], dtype=dtype)
    result = arr.astype("int64")
    expected = np.array([1, 2, 3], dtype="int64")
    tm.assert_numpy_array_equal(result, expected)

    arr = pd.array(["1", pd.NA, "3"], dtype=dtype)
    if dtype.na_value is np.nan:
        err = ValueError
        msg = "cannot convert float NaN to integer"
    else:
        err = TypeError
        msg = (
            r"int\(\) argument must be a string, a bytes-like "
            r"object or a( real)? number"
        )
    with pytest.raises(err, match=msg):
        arr.astype("int64")


def test_astype_nullable_int(dtype):
    arr = pd.array(["1", pd.NA, "3"], dtype=dtype)

    result = arr.astype("Int64")
    expected = pd.array([1, pd.NA, 3], dtype="Int64")
    tm.assert_extension_array_equal(result, expected)


def test_astype_float(dtype, any_float_dtype):
    # Don't compare arrays (37974)
    ser = pd.Series(["1.1", pd.NA, "3.3"], dtype=dtype)
    result = ser.astype(any_float_dtype)
    expected = pd.Series([1.1, np.nan, 3.3], dtype=any_float_dtype)
    tm.assert_series_equal(result, expected)


@pytest.mark.parametrize("skipna", [True, False])
def test_reduce(skipna, dtype):
    arr = pd.Series(["a", "b", "c"], dtype=dtype)
    result = arr.sum(skipna=skipna)
    assert result == "abc"


@pytest.mark.parametrize("skipna", [True, False])
def test_reduce_missing(skipna, dtype):
    arr = pd.Series([None, "a", None, "b", "c", None], dtype=dtype)
    result = arr.sum(skipna=skipna)
    if skipna:
        assert result == "abc"
    else:
        assert pd.isna(result)


@pytest.mark.parametrize("method", ["min", "max"])
@pytest.mark.parametrize("skipna", [True, False])
def test_min_max(method, skipna, dtype):
    arr = pd.Series(["a", "b", "c", None], dtype=dtype)
    result = getattr(arr, method)(skipna=skipna)
    if skipna:
        expected = "a" if method == "min" else "c"
        assert result == expected
    else:
        assert result is arr.dtype.na_value


@pytest.mark.parametrize("method", ["min", "max"])
@pytest.mark.parametrize("box", [pd.Series, pd.array])
def test_min_max_numpy(method, box, dtype, request):
    if dtype.storage == "pyarrow" and box is pd.array:
        if box is pd.array:
            reason = "'<=' not supported between instances of 'str' and 'NoneType'"
        else:
            reason = "'ArrowStringArray' object has no attribute 'max'"
        mark = pytest.mark.xfail(raises=TypeError, reason=reason)
        request.applymarker(mark)

    arr = box(["a", "b", "c", None], dtype=dtype)
    result = getattr(np, method)(arr)
    expected = "a" if method == "min" else "c"
    assert result == expected


def test_fillna_args(dtype):
    # GH 37987

    arr = pd.array(["a", pd.NA], dtype=dtype)

    res = arr.fillna(value="b")
    expected = pd.array(["a", "b"], dtype=dtype)
    tm.assert_extension_array_equal(res, expected)

    res = arr.fillna(value=np.str_("b"))
    expected = pd.array(["a", "b"], dtype=dtype)
    tm.assert_extension_array_equal(res, expected)

    msg = "Invalid value '1' for dtype 'str"
    with pytest.raises(TypeError, match=msg):
        arr.fillna(value=1)


def test_arrow_array(dtype):
    # protocol added in 0.15.0
    pa = td.versioned_importorskip("pyarrow")
    import pyarrow.compute as pc

    data = pd.array(["a", "b", "c"], dtype=dtype)
    arr = pa.array(data)
    expected = pa.array(list(data), type=pa.large_string(), from_pandas=True)
    if dtype.storage == "pyarrow" and pa_version_under12p0:
        expected = pa.chunked_array(expected)
    if dtype.storage == "python":
        expected = pc.cast(expected, pa.string())
    assert arr.equals(expected)


@pytest.mark.filterwarnings("ignore:Passing a BlockManager:DeprecationWarning")
def test_arrow_roundtrip(dtype, string_storage, using_infer_string):
    # roundtrip possible from arrow 1.0.0
    pa = td.versioned_importorskip("pyarrow")

    data = pd.array(["a", "b", None], dtype=dtype)
    df = pd.DataFrame({"a": data})
    table = pa.table(df)
    if dtype.storage == "python":
        assert table.field("a").type == "string"
    else:
        assert table.field("a").type == "large_string"
    with pd.option_context("string_storage", string_storage):
        result = table.to_pandas()
    if dtype.na_value is np.nan and not using_infer_string:
        assert result["a"].dtype == "object"
    else:
        assert isinstance(result["a"].dtype, pd.StringDtype)
        expected = df.astype(pd.StringDtype(string_storage, na_value=dtype.na_value))
        if using_infer_string:
            expected.columns = expected.columns.astype(
                pd.StringDtype(string_storage, na_value=np.nan)
            )
        tm.assert_frame_equal(result, expected)
        # ensure the missing value is represented by NA and not np.nan or None
        assert result.loc[2, "a"] is result["a"].dtype.na_value


@pytest.mark.filterwarnings("ignore:Passing a BlockManager:DeprecationWarning")
def test_arrow_from_string(using_infer_string):
    # not roundtrip,  but starting with pyarrow table without pandas metadata
    pa = td.versioned_importorskip("pyarrow")
    table = pa.table({"a": pa.array(["a", "b", None], type=pa.string())})

    result = table.to_pandas()

    if using_infer_string and not pa_version_under19p0:
        expected = pd.DataFrame({"a": ["a", "b", None]}, dtype="str")
    else:
        expected = pd.DataFrame({"a": ["a", "b", None]}, dtype="object")
    tm.assert_frame_equal(result, expected)


@pytest.mark.filterwarnings("ignore:Passing a BlockManager:DeprecationWarning")
def test_arrow_load_from_zero_chunks(dtype, string_storage, using_infer_string):
    # GH-41040
    pa = td.versioned_importorskip("pyarrow")

    data = pd.array([], dtype=dtype)
    df = pd.DataFrame({"a": data})
    table = pa.table(df)
    if dtype.storage == "python":
        assert table.field("a").type == "string"
    else:
        assert table.field("a").type == "large_string"
    # Instantiate the same table with no chunks at all
    table = pa.table([pa.chunked_array([], type=pa.string())], schema=table.schema)
    with pd.option_context("string_storage", string_storage):
        result = table.to_pandas()

    if dtype.na_value is np.nan and not using_string_dtype():
        assert result["a"].dtype == "object"
    else:
        assert isinstance(result["a"].dtype, pd.StringDtype)
        expected = df.astype(pd.StringDtype(string_storage, na_value=dtype.na_value))
        if using_infer_string:
            expected.columns = expected.columns.astype(
                pd.StringDtype(string_storage, na_value=np.nan)
            )
        tm.assert_frame_equal(result, expected)


def test_value_counts_na(dtype):
    if dtype.na_value is np.nan:
        exp_dtype = "int64"
    elif dtype.storage == "pyarrow":
        exp_dtype = "int64[pyarrow]"
    else:
        exp_dtype = "Int64"
    arr = pd.array(["a", "b", "a", pd.NA], dtype=dtype)
    result = arr.value_counts(dropna=False)
    expected = pd.Series([2, 1, 1], index=arr[[0, 1, 3]], dtype=exp_dtype, name="count")
    tm.assert_series_equal(result, expected)

    result = arr.value_counts(dropna=True)
    expected = pd.Series([2, 1], index=arr[:2], dtype=exp_dtype, name="count")
    tm.assert_series_equal(result, expected)


def test_value_counts_with_normalize(dtype):
    if dtype.na_value is np.nan:
        exp_dtype = np.float64
    elif dtype.storage == "pyarrow":
        exp_dtype = "double[pyarrow]"
    else:
        exp_dtype = "Float64"
    ser = pd.Series(["a", "b", "a", pd.NA], dtype=dtype)
    result = ser.value_counts(normalize=True)
    expected = pd.Series([2, 1], index=ser[:2], dtype=exp_dtype, name="proportion") / 3
    tm.assert_series_equal(result, expected)


@pytest.mark.parametrize(
    "values, expected",
    [
        (["a", "b", "c"], np.array([False, False, False])),
        (["a", "b", None], np.array([False, False, True])),
    ],
)
def test_use_inf_as_na(values, expected, dtype):
    # https://github.com/pandas-dev/pandas/issues/33655
    values = pd.array(values, dtype=dtype)
    msg = "use_inf_as_na option is deprecated"
    with tm.assert_produces_warning(FutureWarning, match=msg):
        with pd.option_context("mode.use_inf_as_na", True):
            result = values.isna()
            tm.assert_numpy_array_equal(result, expected)

            result = pd.Series(values).isna()
            expected = pd.Series(expected)
            tm.assert_series_equal(result, expected)

            result = pd.DataFrame(values).isna()
            expected = pd.DataFrame(expected)
            tm.assert_frame_equal(result, expected)


def test_value_counts_sort_false(dtype):
    if dtype.na_value is np.nan:
        exp_dtype = "int64"
    elif dtype.storage == "pyarrow":
        exp_dtype = "int64[pyarrow]"
    else:
        exp_dtype = "Int64"
    ser = pd.Series(["a", "b", "c", "b"], dtype=dtype)
    result = ser.value_counts(sort=False)
    expected = pd.Series([1, 2, 1], index=ser[:3], dtype=exp_dtype, name="count")
    tm.assert_series_equal(result, expected)


def test_memory_usage(dtype):
    # GH 33963

    if dtype.storage == "pyarrow":
        pytest.skip(f"not applicable for {dtype.storage}")

    series = pd.Series(["a", "b", "c"], dtype=dtype)

    assert 0 < series.nbytes <= series.memory_usage() < series.memory_usage(deep=True)


@pytest.mark.parametrize("float_dtype", [np.float16, np.float32, np.float64])
def test_astype_from_float_dtype(float_dtype, dtype):
    # https://github.com/pandas-dev/pandas/issues/36451
    ser = pd.Series([0.1], dtype=float_dtype)
    result = ser.astype(dtype)
    expected = pd.Series(["0.1"], dtype=dtype)
    tm.assert_series_equal(result, expected)


def test_to_numpy_returns_pdna_default(dtype):
    arr = pd.array(["a", pd.NA, "b"], dtype=dtype)
    result = np.array(arr)
    expected = np.array(["a", dtype.na_value, "b"], dtype=object)
    tm.assert_numpy_array_equal(result, expected)


def test_to_numpy_na_value(dtype, nulls_fixture):
    na_value = nulls_fixture
    arr = pd.array(["a", pd.NA, "b"], dtype=dtype)
    result = arr.to_numpy(na_value=na_value)
    expected = np.array(["a", na_value, "b"], dtype=object)
    tm.assert_numpy_array_equal(result, expected)


def test_isin(dtype, fixed_now_ts):
    s = pd.Series(["a", "b", None], dtype=dtype)

    result = s.isin(["a", "c"])
    expected = pd.Series([True, False, False])
    tm.assert_series_equal(result, expected)

    result = s.isin(["a", pd.NA])
    expected = pd.Series([True, False, True])
    tm.assert_series_equal(result, expected)

    result = s.isin([])
    expected = pd.Series([False, False, False])
    tm.assert_series_equal(result, expected)

    result = s.isin(["a", fixed_now_ts])
    expected = pd.Series([True, False, False])
    tm.assert_series_equal(result, expected)

    result = s.isin([fixed_now_ts])
    expected = pd.Series([False, False, False])
    tm.assert_series_equal(result, expected)


def test_isin_string_array(dtype, dtype2):
    s = pd.Series(["a", "b", None], dtype=dtype)

    result = s.isin(pd.array(["a", "c"], dtype=dtype2))
    expected = pd.Series([True, False, False])
    tm.assert_series_equal(result, expected)

    result = s.isin(pd.array(["a", None], dtype=dtype2))
    expected = pd.Series([True, False, True])
    tm.assert_series_equal(result, expected)


def test_isin_arrow_string_array(dtype):
    pa = td.versioned_importorskip("pyarrow")
    s = pd.Series(["a", "b", None], dtype=dtype)

    result = s.isin(pd.array(["a", "c"], dtype=pd.ArrowDtype(pa.string())))
    expected = pd.Series([True, False, False])
    tm.assert_series_equal(result, expected)

    result = s.isin(pd.array(["a", None], dtype=pd.ArrowDtype(pa.string())))
    expected = pd.Series([True, False, True])
    tm.assert_series_equal(result, expected)


def test_setitem_scalar_with_mask_validation(dtype):
    # https://github.com/pandas-dev/pandas/issues/47628
    # setting None with a boolean mask (through _putmaks) should still result
    # in pd.NA values in the underlying array
    ser = pd.Series(["a", "b", "c"], dtype=dtype)
    mask = np.array([False, True, False])

    ser[mask] = None
    assert ser.array[1] is ser.dtype.na_value

    # for other non-string we should also raise an error
    ser = pd.Series(["a", "b", "c"], dtype=dtype)
    msg = "Invalid value '1' for dtype 'str"
    with pytest.raises(TypeError, match=msg):
        ser[mask] = 1


def test_from_numpy_str(dtype):
    vals = ["a", "b", "c"]
    arr = np.array(vals, dtype=np.str_)
    result = pd.array(arr, dtype=dtype)
    expected = pd.array(vals, dtype=dtype)
    tm.assert_extension_array_equal(result, expected)


def test_tolist(dtype):
    vals = ["a", "b", "c"]
    arr = pd.array(vals, dtype=dtype)
    result = arr.tolist()
    expected = vals
    tm.assert_equal(result, expected)