1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
|
from datetime import (
datetime,
timedelta,
)
from io import StringIO
import re
import sys
from textwrap import dedent
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas._config import using_string_dtype
from pandas import (
CategoricalIndex,
DataFrame,
Index,
NaT,
Series,
Timestamp,
concat,
date_range,
get_option,
option_context,
read_csv,
timedelta_range,
to_datetime,
)
import pandas._testing as tm
def _three_digit_exp():
return f"{1.7e8:.4g}" == "1.7e+008"
class TestDataFrameToStringFormatters:
def test_to_string_masked_ea_with_formatter(self):
# GH#39336
df = DataFrame(
{
"a": Series([0.123456789, 1.123456789], dtype="Float64"),
"b": Series([1, 2], dtype="Int64"),
}
)
result = df.to_string(formatters=["{:.2f}".format, "{:.2f}".format])
expected = dedent(
"""\
a b
0 0.12 1.00
1 1.12 2.00"""
)
assert result == expected
def test_to_string_with_formatters(self):
df = DataFrame(
{
"int": [1, 2, 3],
"float": [1.0, 2.0, 3.0],
"object": [(1, 2), True, False],
},
columns=["int", "float", "object"],
)
formatters = [
("int", lambda x: f"0x{x:x}"),
("float", lambda x: f"[{x: 4.1f}]"),
("object", lambda x: f"-{x!s}-"),
]
result = df.to_string(formatters=dict(formatters))
result2 = df.to_string(formatters=list(zip(*formatters))[1])
assert result == (
" int float object\n"
"0 0x1 [ 1.0] -(1, 2)-\n"
"1 0x2 [ 2.0] -True-\n"
"2 0x3 [ 3.0] -False-"
)
assert result == result2
def test_to_string_with_datetime64_monthformatter(self):
months = [datetime(2016, 1, 1), datetime(2016, 2, 2)]
x = DataFrame({"months": months})
def format_func(x):
return x.strftime("%Y-%m")
result = x.to_string(formatters={"months": format_func})
expected = dedent(
"""\
months
0 2016-01
1 2016-02"""
)
assert result.strip() == expected
def test_to_string_with_datetime64_hourformatter(self):
x = DataFrame(
{"hod": to_datetime(["10:10:10.100", "12:12:12.120"], format="%H:%M:%S.%f")}
)
def format_func(x):
return x.strftime("%H:%M")
result = x.to_string(formatters={"hod": format_func})
expected = dedent(
"""\
hod
0 10:10
1 12:12"""
)
assert result.strip() == expected
def test_to_string_with_formatters_unicode(self):
df = DataFrame({"c/\u03c3": [1, 2, 3]})
result = df.to_string(formatters={"c/\u03c3": str})
expected = dedent(
"""\
c/\u03c3
0 1
1 2
2 3"""
)
assert result == expected
def test_to_string_index_formatter(self):
df = DataFrame([range(5), range(5, 10), range(10, 15)])
rs = df.to_string(formatters={"__index__": lambda x: "abc"[x]})
xp = dedent(
"""\
0 1 2 3 4
a 0 1 2 3 4
b 5 6 7 8 9
c 10 11 12 13 14\
"""
)
assert rs == xp
def test_no_extra_space(self):
# GH#52690: Check that no extra space is given
col1 = "TEST"
col2 = "PANDAS"
col3 = "to_string"
expected = f"{col1:<6s} {col2:<7s} {col3:<10s}"
df = DataFrame([{"col1": "TEST", "col2": "PANDAS", "col3": "to_string"}])
d = {"col1": "{:<6s}".format, "col2": "{:<7s}".format, "col3": "{:<10s}".format}
result = df.to_string(index=False, header=False, formatters=d)
assert result == expected
class TestDataFrameToStringColSpace:
def test_to_string_with_column_specific_col_space_raises(self):
df = DataFrame(
np.random.default_rng(2).random(size=(3, 3)), columns=["a", "b", "c"]
)
msg = (
"Col_space length\\(\\d+\\) should match "
"DataFrame number of columns\\(\\d+\\)"
)
with pytest.raises(ValueError, match=msg):
df.to_string(col_space=[30, 40])
with pytest.raises(ValueError, match=msg):
df.to_string(col_space=[30, 40, 50, 60])
msg = "unknown column"
with pytest.raises(ValueError, match=msg):
df.to_string(col_space={"a": "foo", "b": 23, "d": 34})
def test_to_string_with_column_specific_col_space(self):
df = DataFrame(
np.random.default_rng(2).random(size=(3, 3)), columns=["a", "b", "c"]
)
result = df.to_string(col_space={"a": 10, "b": 11, "c": 12})
# 3 separating space + each col_space for (id, a, b, c)
assert len(result.split("\n")[1]) == (3 + 1 + 10 + 11 + 12)
result = df.to_string(col_space=[10, 11, 12])
assert len(result.split("\n")[1]) == (3 + 1 + 10 + 11 + 12)
def test_to_string_with_col_space(self):
df = DataFrame(np.random.default_rng(2).random(size=(1, 3)))
c10 = len(df.to_string(col_space=10).split("\n")[1])
c20 = len(df.to_string(col_space=20).split("\n")[1])
c30 = len(df.to_string(col_space=30).split("\n")[1])
assert c10 < c20 < c30
# GH#8230
# col_space wasn't being applied with header=False
with_header = df.to_string(col_space=20)
with_header_row1 = with_header.splitlines()[1]
no_header = df.to_string(col_space=20, header=False)
assert len(with_header_row1) == len(no_header)
def test_to_string_repr_tuples(self):
buf = StringIO()
df = DataFrame({"tups": list(zip(range(10), range(10)))})
repr(df)
df.to_string(col_space=10, buf=buf)
class TestDataFrameToStringHeader:
def test_to_string_header_false(self):
# GH#49230
df = DataFrame([1, 2])
df.index.name = "a"
s = df.to_string(header=False)
expected = "a \n0 1\n1 2"
assert s == expected
df = DataFrame([[1, 2], [3, 4]])
df.index.name = "a"
s = df.to_string(header=False)
expected = "a \n0 1 2\n1 3 4"
assert s == expected
def test_to_string_multindex_header(self):
# GH#16718
df = DataFrame({"a": [0], "b": [1], "c": [2], "d": [3]}).set_index(["a", "b"])
res = df.to_string(header=["r1", "r2"])
exp = " r1 r2\na b \n0 1 2 3"
assert res == exp
def test_to_string_no_header(self):
df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]})
df_s = df.to_string(header=False)
expected = "0 1 4\n1 2 5\n2 3 6"
assert df_s == expected
def test_to_string_specified_header(self):
df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]})
df_s = df.to_string(header=["X", "Y"])
expected = " X Y\n0 1 4\n1 2 5\n2 3 6"
assert df_s == expected
msg = "Writing 2 cols but got 1 aliases"
with pytest.raises(ValueError, match=msg):
df.to_string(header=["X"])
class TestDataFrameToStringLineWidth:
def test_to_string_line_width(self):
df = DataFrame(123, index=range(10, 15), columns=range(30))
lines = df.to_string(line_width=80)
assert max(len(line) for line in lines.split("\n")) == 80
def test_to_string_line_width_no_index(self):
# GH#13998, GH#22505
df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]})
df_s = df.to_string(line_width=1, index=False)
expected = " x \\\n 1 \n 2 \n 3 \n\n y \n 4 \n 5 \n 6 "
assert df_s == expected
df = DataFrame({"x": [11, 22, 33], "y": [4, 5, 6]})
df_s = df.to_string(line_width=1, index=False)
expected = " x \\\n11 \n22 \n33 \n\n y \n 4 \n 5 \n 6 "
assert df_s == expected
df = DataFrame({"x": [11, 22, -33], "y": [4, 5, -6]})
df_s = df.to_string(line_width=1, index=False)
expected = " x \\\n 11 \n 22 \n-33 \n\n y \n 4 \n 5 \n-6 "
assert df_s == expected
def test_to_string_line_width_no_header(self):
# GH#53054
df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]})
df_s = df.to_string(line_width=1, header=False)
expected = "0 1 \\\n1 2 \n2 3 \n\n0 4 \n1 5 \n2 6 "
assert df_s == expected
df = DataFrame({"x": [11, 22, 33], "y": [4, 5, 6]})
df_s = df.to_string(line_width=1, header=False)
expected = "0 11 \\\n1 22 \n2 33 \n\n0 4 \n1 5 \n2 6 "
assert df_s == expected
df = DataFrame({"x": [11, 22, -33], "y": [4, 5, -6]})
df_s = df.to_string(line_width=1, header=False)
expected = "0 11 \\\n1 22 \n2 -33 \n\n0 4 \n1 5 \n2 -6 "
assert df_s == expected
def test_to_string_line_width_with_both_index_and_header(self):
# GH#53054
df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]})
df_s = df.to_string(line_width=1)
expected = (
" x \\\n0 1 \n1 2 \n2 3 \n\n y \n0 4 \n1 5 \n2 6 "
)
assert df_s == expected
df = DataFrame({"x": [11, 22, 33], "y": [4, 5, 6]})
df_s = df.to_string(line_width=1)
expected = (
" x \\\n0 11 \n1 22 \n2 33 \n\n y \n0 4 \n1 5 \n2 6 "
)
assert df_s == expected
df = DataFrame({"x": [11, 22, -33], "y": [4, 5, -6]})
df_s = df.to_string(line_width=1)
expected = (
" x \\\n0 11 \n1 22 \n2 -33 \n\n y \n0 4 \n1 5 \n2 -6 "
)
assert df_s == expected
def test_to_string_line_width_no_index_no_header(self):
# GH#53054
df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]})
df_s = df.to_string(line_width=1, index=False, header=False)
expected = "1 \\\n2 \n3 \n\n4 \n5 \n6 "
assert df_s == expected
df = DataFrame({"x": [11, 22, 33], "y": [4, 5, 6]})
df_s = df.to_string(line_width=1, index=False, header=False)
expected = "11 \\\n22 \n33 \n\n4 \n5 \n6 "
assert df_s == expected
df = DataFrame({"x": [11, 22, -33], "y": [4, 5, -6]})
df_s = df.to_string(line_width=1, index=False, header=False)
expected = " 11 \\\n 22 \n-33 \n\n 4 \n 5 \n-6 "
assert df_s == expected
class TestToStringNumericFormatting:
def test_to_string_float_format_no_fixed_width(self):
# GH#21625
df = DataFrame({"x": [0.19999]})
expected = " x\n0 0.200"
assert df.to_string(float_format="%.3f") == expected
# GH#22270
df = DataFrame({"x": [100.0]})
expected = " x\n0 100"
assert df.to_string(float_format="%.0f") == expected
def test_to_string_small_float_values(self):
df = DataFrame({"a": [1.5, 1e-17, -5.5e-7]})
result = df.to_string()
# sadness per above
if _three_digit_exp():
expected = (
" a\n"
"0 1.500000e+000\n"
"1 1.000000e-017\n"
"2 -5.500000e-007"
)
else:
expected = (
" a\n"
"0 1.500000e+00\n"
"1 1.000000e-17\n"
"2 -5.500000e-07"
)
assert result == expected
# but not all exactly zero
df = df * 0
result = df.to_string()
expected = " 0\n0 0\n1 0\n2 -0"
# TODO: assert that these match??
def test_to_string_complex_float_formatting(self):
# GH #25514, 25745
with option_context("display.precision", 5):
df = DataFrame(
{
"x": [
(0.4467846931321966 + 0.0715185102060818j),
(0.2739442392974528 + 0.23515228785438969j),
(0.26974928742135185 + 0.3250604054898979j),
(-1j),
]
}
)
result = df.to_string()
expected = (
" x\n0 0.44678+0.07152j\n"
"1 0.27394+0.23515j\n"
"2 0.26975+0.32506j\n"
"3 -0.00000-1.00000j"
)
assert result == expected
def test_to_string_format_inf(self):
# GH#24861
df = DataFrame(
{
"A": [-np.inf, np.inf, -1, -2.1234, 3, 4],
"B": [-np.inf, np.inf, "foo", "foooo", "fooooo", "bar"],
}
)
result = df.to_string()
expected = (
" A B\n"
"0 -inf -inf\n"
"1 inf inf\n"
"2 -1.0000 foo\n"
"3 -2.1234 foooo\n"
"4 3.0000 fooooo\n"
"5 4.0000 bar"
)
assert result == expected
df = DataFrame(
{
"A": [-np.inf, np.inf, -1.0, -2.0, 3.0, 4.0],
"B": [-np.inf, np.inf, "foo", "foooo", "fooooo", "bar"],
}
)
result = df.to_string()
expected = (
" A B\n"
"0 -inf -inf\n"
"1 inf inf\n"
"2 -1.0 foo\n"
"3 -2.0 foooo\n"
"4 3.0 fooooo\n"
"5 4.0 bar"
)
assert result == expected
def test_to_string_int_formatting(self):
df = DataFrame({"x": [-15, 20, 25, -35]})
assert issubclass(df["x"].dtype.type, np.integer)
output = df.to_string()
expected = " x\n0 -15\n1 20\n2 25\n3 -35"
assert output == expected
def test_to_string_float_formatting(self):
with option_context(
"display.precision",
5,
"display.notebook_repr_html",
False,
):
df = DataFrame(
{"x": [0, 0.25, 3456.000, 12e45, 1.64e6, 1.7e8, 1.253456, np.pi, -1e6]}
)
df_s = df.to_string()
if _three_digit_exp():
expected = (
" x\n0 0.00000e+000\n1 2.50000e-001\n"
"2 3.45600e+003\n3 1.20000e+046\n4 1.64000e+006\n"
"5 1.70000e+008\n6 1.25346e+000\n7 3.14159e+000\n"
"8 -1.00000e+006"
)
else:
expected = (
" x\n0 0.00000e+00\n1 2.50000e-01\n"
"2 3.45600e+03\n3 1.20000e+46\n4 1.64000e+06\n"
"5 1.70000e+08\n6 1.25346e+00\n7 3.14159e+00\n"
"8 -1.00000e+06"
)
assert df_s == expected
df = DataFrame({"x": [3234, 0.253]})
df_s = df.to_string()
expected = " x\n0 3234.000\n1 0.253"
assert df_s == expected
assert get_option("display.precision") == 6
df = DataFrame({"x": [1e9, 0.2512]})
df_s = df.to_string()
if _three_digit_exp():
expected = " x\n0 1.000000e+009\n1 2.512000e-001"
else:
expected = " x\n0 1.000000e+09\n1 2.512000e-01"
assert df_s == expected
class TestDataFrameToString:
def test_to_string_decimal(self):
# GH#23614
df = DataFrame({"A": [6.0, 3.1, 2.2]})
expected = " A\n0 6,0\n1 3,1\n2 2,2"
assert df.to_string(decimal=",") == expected
def test_to_string_left_justify_cols(self):
df = DataFrame({"x": [3234, 0.253]})
df_s = df.to_string(justify="left")
expected = " x \n0 3234.000\n1 0.253"
assert df_s == expected
def test_to_string_format_na(self):
df = DataFrame(
{
"A": [np.nan, -1, -2.1234, 3, 4],
"B": [np.nan, "foo", "foooo", "fooooo", "bar"],
}
)
result = df.to_string()
expected = (
" A B\n"
"0 NaN NaN\n"
"1 -1.0000 foo\n"
"2 -2.1234 foooo\n"
"3 3.0000 fooooo\n"
"4 4.0000 bar"
)
assert result == expected
df = DataFrame(
{
"A": [np.nan, -1.0, -2.0, 3.0, 4.0],
"B": [np.nan, "foo", "foooo", "fooooo", "bar"],
}
)
result = df.to_string()
expected = (
" A B\n"
"0 NaN NaN\n"
"1 -1.0 foo\n"
"2 -2.0 foooo\n"
"3 3.0 fooooo\n"
"4 4.0 bar"
)
assert result == expected
def test_to_string_with_dict_entries(self):
df = DataFrame({"A": [{"a": 1, "b": 2}]})
val = df.to_string()
assert "'a': 1" in val
assert "'b': 2" in val
def test_to_string_with_categorical_columns(self):
# GH#35439
data = [[4, 2], [3, 2], [4, 3]]
cols = ["aaaaaaaaa", "b"]
df = DataFrame(data, columns=cols)
df_cat_cols = DataFrame(data, columns=CategoricalIndex(cols))
assert df.to_string() == df_cat_cols.to_string()
def test_repr_embedded_ndarray(self):
arr = np.empty(10, dtype=[("err", object)])
for i in range(len(arr)):
arr["err"][i] = np.random.default_rng(2).standard_normal(i)
df = DataFrame(arr)
repr(df["err"])
repr(df)
df.to_string()
def test_to_string_truncate(self):
# GH 9784 - dont truncate when calling DataFrame.to_string
df = DataFrame(
[
{
"a": "foo",
"b": "bar",
"c": "let's make this a very VERY long line that is longer "
"than the default 50 character limit",
"d": 1,
},
{"a": "foo", "b": "bar", "c": "stuff", "d": 1},
]
)
df.set_index(["a", "b", "c"])
assert df.to_string() == (
" a b "
" c d\n"
"0 foo bar let's make this a very VERY long line t"
"hat is longer than the default 50 character limit 1\n"
"1 foo bar "
" stuff 1"
)
with option_context("max_colwidth", 20):
# the display option has no effect on the to_string method
assert df.to_string() == (
" a b "
" c d\n"
"0 foo bar let's make this a very VERY long line t"
"hat is longer than the default 50 character limit 1\n"
"1 foo bar "
" stuff 1"
)
assert df.to_string(max_colwidth=20) == (
" a b c d\n"
"0 foo bar let's make this ... 1\n"
"1 foo bar stuff 1"
)
@pytest.mark.parametrize(
"input_array, expected",
[
({"A": ["a"]}, "A\na"),
({"A": ["a", "b"], "B": ["c", "dd"]}, "A B\na c\nb dd"),
({"A": ["a", 1], "B": ["aa", 1]}, "A B\na aa\n1 1"),
],
)
def test_format_remove_leading_space_dataframe(self, input_array, expected):
# GH#24980
df = DataFrame(input_array).to_string(index=False)
assert df == expected
@pytest.mark.parametrize(
"data,expected",
[
(
{"col1": [1, 2], "col2": [3, 4]},
" col1 col2\n0 1 3\n1 2 4",
),
(
{"col1": ["Abc", 0.756], "col2": [np.nan, 4.5435]},
" col1 col2\n0 Abc NaN\n1 0.756 4.5435",
),
(
{"col1": [np.nan, "a"], "col2": [0.009, 3.543], "col3": ["Abc", 23]},
" col1 col2 col3\n0 NaN 0.009 Abc\n1 a 3.543 23",
),
],
)
def test_to_string_max_rows_zero(self, data, expected):
# GH#35394
result = DataFrame(data=data).to_string(max_rows=0)
assert result == expected
@pytest.mark.parametrize(
"max_cols, max_rows, expected",
[
(
10,
None,
" 0 1 2 3 4 ... 6 7 8 9 10\n"
" 0 0 0 0 0 ... 0 0 0 0 0\n"
" 0 0 0 0 0 ... 0 0 0 0 0\n"
" 0 0 0 0 0 ... 0 0 0 0 0\n"
" 0 0 0 0 0 ... 0 0 0 0 0",
),
(
None,
2,
" 0 1 2 3 4 5 6 7 8 9 10\n"
" 0 0 0 0 0 0 0 0 0 0 0\n"
" .. .. .. .. .. .. .. .. .. .. ..\n"
" 0 0 0 0 0 0 0 0 0 0 0",
),
(
10,
2,
" 0 1 2 3 4 ... 6 7 8 9 10\n"
" 0 0 0 0 0 ... 0 0 0 0 0\n"
" .. .. .. .. .. ... .. .. .. .. ..\n"
" 0 0 0 0 0 ... 0 0 0 0 0",
),
(
9,
2,
" 0 1 2 3 ... 7 8 9 10\n"
" 0 0 0 0 ... 0 0 0 0\n"
" .. .. .. .. ... .. .. .. ..\n"
" 0 0 0 0 ... 0 0 0 0",
),
(
1,
1,
" 0 ...\n 0 ...\n.. ...",
),
],
)
def test_truncation_no_index(self, max_cols, max_rows, expected):
df = DataFrame([[0] * 11] * 4)
assert (
df.to_string(index=False, max_cols=max_cols, max_rows=max_rows) == expected
)
def test_to_string_no_index(self):
# GH#16839, GH#13032
df = DataFrame({"x": [11, 22], "y": [33, -44], "z": ["AAA", " "]})
df_s = df.to_string(index=False)
# Leading space is expected for positive numbers.
expected = " x y z\n11 33 AAA\n22 -44 "
assert df_s == expected
df_s = df[["y", "x", "z"]].to_string(index=False)
expected = " y x z\n 33 11 AAA\n-44 22 "
assert df_s == expected
def test_to_string_unicode_columns(self, float_frame):
df = DataFrame({"\u03c3": np.arange(10.0)})
buf = StringIO()
df.to_string(buf=buf)
buf.getvalue()
buf = StringIO()
df.info(buf=buf)
buf.getvalue()
result = float_frame.to_string()
assert isinstance(result, str)
@pytest.mark.parametrize("na_rep", ["NaN", "Ted"])
def test_to_string_na_rep_and_float_format(self, na_rep):
# GH#13828
df = DataFrame([["A", 1.2225], ["A", None]], columns=["Group", "Data"])
result = df.to_string(na_rep=na_rep, float_format="{:.2f}".format)
expected = dedent(
f"""\
Group Data
0 A 1.22
1 A {na_rep}"""
)
assert result == expected
def test_to_string_string_dtype(self):
# GH#50099
td.versioned_importorskip("pyarrow")
df = DataFrame(
{"x": ["foo", "bar", "baz"], "y": ["a", "b", "c"], "z": [1, 2, 3]}
)
df = df.astype(
{"x": "string[pyarrow]", "y": "string[python]", "z": "int64[pyarrow]"}
)
result = df.dtypes.to_string()
expected = dedent(
"""\
x string[pyarrow]
y string[python]
z int64[pyarrow]"""
)
assert result == expected
def test_to_string_pos_args_deprecation(self):
# GH#54229
df = DataFrame({"a": [1, 2, 3]})
msg = (
"Starting with pandas version 3.0 all arguments of to_string "
"except for the "
"argument 'buf' will be keyword-only."
)
with tm.assert_produces_warning(FutureWarning, match=msg):
buf = StringIO()
df.to_string(buf, None, None, True, True)
def test_to_string_utf8_columns(self):
n = "\u05d0".encode()
df = DataFrame([1, 2], columns=[n])
with option_context("display.max_rows", 1):
repr(df)
def test_to_string_unicode_two(self):
dm = DataFrame({"c/\u03c3": []})
buf = StringIO()
dm.to_string(buf)
def test_to_string_unicode_three(self):
dm = DataFrame(["\xc2"])
buf = StringIO()
dm.to_string(buf)
def test_to_string_with_float_index(self):
index = Index([1.5, 2, 3, 4, 5])
df = DataFrame(np.arange(5), index=index)
result = df.to_string()
expected = " 0\n1.5 0\n2.0 1\n3.0 2\n4.0 3\n5.0 4"
assert result == expected
def test_to_string(self):
# big mixed
biggie = DataFrame(
{
"A": np.random.default_rng(2).standard_normal(200),
"B": Index([f"{i}?!" for i in range(200)]),
},
)
biggie.loc[:20, "A"] = np.nan
biggie.loc[:20, "B"] = np.nan
s = biggie.to_string()
buf = StringIO()
retval = biggie.to_string(buf=buf)
assert retval is None
assert buf.getvalue() == s
assert isinstance(s, str)
# print in right order
result = biggie.to_string(
columns=["B", "A"], col_space=17, float_format="%.5f".__mod__
)
lines = result.split("\n")
header = lines[0].strip().split()
joined = "\n".join([re.sub(r"\s+", " ", x).strip() for x in lines[1:]])
recons = read_csv(StringIO(joined), names=header, header=None, sep=" ")
tm.assert_series_equal(recons["B"], biggie["B"])
assert recons["A"].count() == biggie["A"].count()
assert (np.abs(recons["A"].dropna() - biggie["A"].dropna()) < 0.1).all()
# FIXME: don't leave commented-out
# expected = ['B', 'A']
# assert header == expected
result = biggie.to_string(columns=["A"], col_space=17)
header = result.split("\n")[0].strip().split()
expected = ["A"]
assert header == expected
biggie.to_string(columns=["B", "A"], formatters={"A": lambda x: f"{x:.1f}"})
biggie.to_string(columns=["B", "A"], float_format=str)
biggie.to_string(columns=["B", "A"], col_space=12, float_format=str)
frame = DataFrame(index=np.arange(200))
frame.to_string()
# TODO: split or simplify this test?
@pytest.mark.xfail(using_string_dtype(), reason="fix when arrow is default")
def test_to_string_index_with_nan(self):
# GH#2850
df = DataFrame(
{
"id1": {0: "1a3", 1: "9h4"},
"id2": {0: np.nan, 1: "d67"},
"id3": {0: "78d", 1: "79d"},
"value": {0: 123, 1: 64},
}
)
# multi-index
y = df.set_index(["id1", "id2", "id3"])
result = y.to_string()
expected = (
" value\nid1 id2 id3 \n"
"1a3 NaN 78d 123\n9h4 d67 79d 64"
)
assert result == expected
# index
y = df.set_index("id2")
result = y.to_string()
expected = (
" id1 id3 value\nid2 \n"
"NaN 1a3 78d 123\nd67 9h4 79d 64"
)
assert result == expected
# with append (this failed in 0.12)
y = df.set_index(["id1", "id2"]).set_index("id3", append=True)
result = y.to_string()
expected = (
" value\nid1 id2 id3 \n"
"1a3 NaN 78d 123\n9h4 d67 79d 64"
)
assert result == expected
# all-nan in mi
df2 = df.copy()
df2.loc[:, "id2"] = np.nan
y = df2.set_index("id2")
result = y.to_string()
expected = (
" id1 id3 value\nid2 \n"
"NaN 1a3 78d 123\nNaN 9h4 79d 64"
)
assert result == expected
# partial nan in mi
df2 = df.copy()
df2.loc[:, "id2"] = np.nan
y = df2.set_index(["id2", "id3"])
result = y.to_string()
expected = (
" id1 value\nid2 id3 \n"
"NaN 78d 1a3 123\n 79d 9h4 64"
)
assert result == expected
df = DataFrame(
{
"id1": {0: np.nan, 1: "9h4"},
"id2": {0: np.nan, 1: "d67"},
"id3": {0: np.nan, 1: "79d"},
"value": {0: 123, 1: 64},
}
)
y = df.set_index(["id1", "id2", "id3"])
result = y.to_string()
expected = (
" value\nid1 id2 id3 \n"
"NaN NaN NaN 123\n9h4 d67 79d 64"
)
assert result == expected
def test_to_string_nonunicode_nonascii_alignment(self):
df = DataFrame([["aa\xc3\xa4\xc3\xa4", 1], ["bbbb", 2]])
rep_str = df.to_string()
lines = rep_str.split("\n")
assert len(lines[1]) == len(lines[2])
def test_unicode_problem_decoding_as_ascii(self):
df = DataFrame({"c/\u03c3": Series({"test": np.nan})})
str(df.to_string())
def test_to_string_repr_unicode(self):
buf = StringIO()
unicode_values = ["\u03c3"] * 10
unicode_values = np.array(unicode_values, dtype=object)
df = DataFrame({"unicode": unicode_values})
df.to_string(col_space=10, buf=buf)
# it works!
repr(df)
# it works even if sys.stdin in None
_stdin = sys.stdin
try:
sys.stdin = None
repr(df)
finally:
sys.stdin = _stdin
class TestSeriesToString:
def test_to_string_without_index(self):
# GH#11729 Test index=False option
ser = Series([1, 2, 3, 4])
result = ser.to_string(index=False)
expected = "\n".join(["1", "2", "3", "4"])
assert result == expected
def test_to_string_name(self):
ser = Series(range(100), dtype="int64")
ser.name = "myser"
res = ser.to_string(max_rows=2, name=True)
exp = "0 0\n ..\n99 99\nName: myser"
assert res == exp
res = ser.to_string(max_rows=2, name=False)
exp = "0 0\n ..\n99 99"
assert res == exp
def test_to_string_dtype(self):
ser = Series(range(100), dtype="int64")
res = ser.to_string(max_rows=2, dtype=True)
exp = "0 0\n ..\n99 99\ndtype: int64"
assert res == exp
res = ser.to_string(max_rows=2, dtype=False)
exp = "0 0\n ..\n99 99"
assert res == exp
def test_to_string_length(self):
ser = Series(range(100), dtype="int64")
res = ser.to_string(max_rows=2, length=True)
exp = "0 0\n ..\n99 99\nLength: 100"
assert res == exp
def test_to_string_na_rep(self):
ser = Series(index=range(100), dtype=np.float64)
res = ser.to_string(na_rep="foo", max_rows=2)
exp = "0 foo\n ..\n99 foo"
assert res == exp
def test_to_string_float_format(self):
ser = Series(range(10), dtype="float64")
res = ser.to_string(float_format=lambda x: f"{x:2.1f}", max_rows=2)
exp = "0 0.0\n ..\n9 9.0"
assert res == exp
def test_to_string_header(self):
ser = Series(range(10), dtype="int64")
ser.index.name = "foo"
res = ser.to_string(header=True, max_rows=2)
exp = "foo\n0 0\n ..\n9 9"
assert res == exp
res = ser.to_string(header=False, max_rows=2)
exp = "0 0\n ..\n9 9"
assert res == exp
def test_to_string_empty_col(self):
# GH#13653
ser = Series(["", "Hello", "World", "", "", "Mooooo", "", ""])
res = ser.to_string(index=False)
exp = " \n Hello\n World\n \n \nMooooo\n \n "
assert re.match(exp, res)
def test_to_string_timedelta64(self):
Series(np.array([1100, 20], dtype="timedelta64[ns]")).to_string()
ser = Series(date_range("2012-1-1", periods=3, freq="D"))
# GH#2146
# adding NaTs
y = ser - ser.shift(1)
result = y.to_string()
assert "1 days" in result
assert "00:00:00" not in result
assert "NaT" in result
# with frac seconds
o = Series([datetime(2012, 1, 1, microsecond=150)] * 3)
y = ser - o
result = y.to_string()
assert "-1 days +23:59:59.999850" in result
# rounding?
o = Series([datetime(2012, 1, 1, 1)] * 3)
y = ser - o
result = y.to_string()
assert "-1 days +23:00:00" in result
assert "1 days 23:00:00" in result
o = Series([datetime(2012, 1, 1, 1, 1)] * 3)
y = ser - o
result = y.to_string()
assert "-1 days +22:59:00" in result
assert "1 days 22:59:00" in result
o = Series([datetime(2012, 1, 1, 1, 1, microsecond=150)] * 3)
y = ser - o
result = y.to_string()
assert "-1 days +22:58:59.999850" in result
assert "0 days 22:58:59.999850" in result
# neg time
td = timedelta(minutes=5, seconds=3)
s2 = Series(date_range("2012-1-1", periods=3, freq="D")) + td
y = ser - s2
result = y.to_string()
assert "-1 days +23:54:57" in result
td = timedelta(microseconds=550)
s2 = Series(date_range("2012-1-1", periods=3, freq="D")) + td
y = ser - td
result = y.to_string()
assert "2012-01-01 23:59:59.999450" in result
# no boxing of the actual elements
td = Series(timedelta_range("1 days", periods=3))
result = td.to_string()
assert result == "0 1 days\n1 2 days\n2 3 days"
def test_to_string(self):
ts = Series(
np.arange(10, dtype=np.float64),
index=date_range("2020-01-01", periods=10, freq="B"),
)
buf = StringIO()
s = ts.to_string()
retval = ts.to_string(buf=buf)
assert retval is None
assert buf.getvalue().strip() == s
# pass float_format
format = "%.4f".__mod__
result = ts.to_string(float_format=format)
result = [x.split()[1] for x in result.split("\n")[:-1]]
expected = [format(x) for x in ts]
assert result == expected
# empty string
result = ts[:0].to_string()
assert result == "Series([], Freq: B)"
result = ts[:0].to_string(length=0)
assert result == "Series([], Freq: B)"
# name and length
cp = ts.copy()
cp.name = "foo"
result = cp.to_string(length=True, name=True, dtype=True)
last_line = result.split("\n")[-1].strip()
assert last_line == (f"Freq: B, Name: foo, Length: {len(cp)}, dtype: float64")
@pytest.mark.parametrize(
"input_array, expected",
[
("a", "a"),
(["a", "b"], "a\nb"),
([1, "a"], "1\na"),
(1, "1"),
([0, -1], " 0\n-1"),
(1.0, "1.0"),
([" a", " b"], " a\n b"),
([".1", "1"], ".1\n 1"),
(["10", "-10"], " 10\n-10"),
],
)
def test_format_remove_leading_space_series(self, input_array, expected):
# GH: 24980
ser = Series(input_array)
result = ser.to_string(index=False)
assert result == expected
def test_to_string_complex_number_trims_zeros(self):
ser = Series([1.000000 + 1.000000j, 1.0 + 1.0j, 1.05 + 1.0j])
result = ser.to_string()
expected = dedent(
"""\
0 1.00+1.00j
1 1.00+1.00j
2 1.05+1.00j"""
)
assert result == expected
def test_nullable_float_to_string(self, float_ea_dtype):
# https://github.com/pandas-dev/pandas/issues/36775
dtype = float_ea_dtype
ser = Series([0.0, 1.0, None], dtype=dtype)
result = ser.to_string()
expected = dedent(
"""\
0 0.0
1 1.0
2 <NA>"""
)
assert result == expected
def test_nullable_int_to_string(self, any_int_ea_dtype):
# https://github.com/pandas-dev/pandas/issues/36775
dtype = any_int_ea_dtype
ser = Series([0, 1, None], dtype=dtype)
result = ser.to_string()
expected = dedent(
"""\
0 0
1 1
2 <NA>"""
)
assert result == expected
def test_to_string_mixed(self):
ser = Series(["foo", np.nan, -1.23, 4.56])
result = ser.to_string()
expected = "".join(["0 foo\n", "1 NaN\n", "2 -1.23\n", "3 4.56"])
assert result == expected
# but don't count NAs as floats
ser = Series(["foo", np.nan, "bar", "baz"])
result = ser.to_string()
expected = "".join(["0 foo\n", "1 NaN\n", "2 bar\n", "3 baz"])
assert result == expected
ser = Series(["foo", 5, "bar", "baz"])
result = ser.to_string()
expected = "".join(["0 foo\n", "1 5\n", "2 bar\n", "3 baz"])
assert result == expected
def test_to_string_float_na_spacing(self):
ser = Series([0.0, 1.5678, 2.0, -3.0, 4.0])
ser[::2] = np.nan
result = ser.to_string()
expected = (
"0 NaN\n"
"1 1.5678\n"
"2 NaN\n"
"3 -3.0000\n"
"4 NaN"
)
assert result == expected
def test_to_string_with_datetimeindex(self):
index = date_range("20130102", periods=6)
ser = Series(1, index=index)
result = ser.to_string()
assert "2013-01-02" in result
# nat in index
s2 = Series(2, index=[Timestamp("20130111"), NaT])
ser = concat([s2, ser])
result = ser.to_string()
assert "NaT" in result
# nat in summary
result = str(s2.index)
assert "NaT" in result
|