1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
from collections import defaultdict
from datetime import datetime
from itertools import product
import numpy as np
import pytest
from pandas.compat import IS64
from pandas import (
NA,
DataFrame,
MultiIndex,
Series,
array,
concat,
merge,
)
import pandas._testing as tm
from pandas.core.algorithms import safe_sort
import pandas.core.common as com
from pandas.core.sorting import (
_decons_group_index,
get_group_index,
is_int64_overflow_possible,
lexsort_indexer,
nargsort,
)
@pytest.fixture
def left_right():
low, high, n = -1 << 10, 1 << 10, 1 << 20
left = DataFrame(
np.random.default_rng(2).integers(low, high, (n, 7)), columns=list("ABCDEFG")
)
left["left"] = left.sum(axis=1)
# one-2-one match
i = np.random.default_rng(2).permutation(len(left))
right = left.iloc[i].copy()
right.columns = right.columns[:-1].tolist() + ["right"]
right.index = np.arange(len(right))
right["right"] *= -1
return left, right
class TestSorting:
@pytest.mark.slow
def test_int64_overflow(self):
B = np.concatenate((np.arange(1000), np.arange(1000), np.arange(500)))
A = np.arange(2500)
df = DataFrame(
{
"A": A,
"B": B,
"C": A,
"D": B,
"E": A,
"F": B,
"G": A,
"H": B,
"values": np.random.default_rng(2).standard_normal(2500),
}
)
lg = df.groupby(["A", "B", "C", "D", "E", "F", "G", "H"])
rg = df.groupby(["H", "G", "F", "E", "D", "C", "B", "A"])
left = lg.sum()["values"]
right = rg.sum()["values"]
exp_index, _ = left.index.sortlevel()
tm.assert_index_equal(left.index, exp_index)
exp_index, _ = right.index.sortlevel(0)
tm.assert_index_equal(right.index, exp_index)
tups = list(map(tuple, df[["A", "B", "C", "D", "E", "F", "G", "H"]].values))
tups = com.asarray_tuplesafe(tups)
expected = df.groupby(tups).sum()["values"]
for k, v in expected.items():
assert left[k] == right[k[::-1]]
assert left[k] == v
assert len(left) == len(right)
def test_int64_overflow_groupby_large_range(self):
# GH9096
values = range(55109)
data = DataFrame.from_dict({"a": values, "b": values, "c": values, "d": values})
grouped = data.groupby(["a", "b", "c", "d"])
assert len(grouped) == len(values)
@pytest.mark.parametrize("agg", ["mean", "median"])
def test_int64_overflow_groupby_large_df_shuffled(self, agg):
rs = np.random.default_rng(2)
arr = rs.integers(-1 << 12, 1 << 12, (1 << 15, 5))
i = rs.choice(len(arr), len(arr) * 4)
arr = np.vstack((arr, arr[i])) # add some duplicate rows
i = rs.permutation(len(arr))
arr = arr[i] # shuffle rows
df = DataFrame(arr, columns=list("abcde"))
df["jim"], df["joe"] = np.zeros((2, len(df)))
gr = df.groupby(list("abcde"))
# verify this is testing what it is supposed to test!
assert is_int64_overflow_possible(gr._grouper.shape)
mi = MultiIndex.from_arrays(
[ar.ravel() for ar in np.array_split(np.unique(arr, axis=0), 5, axis=1)],
names=list("abcde"),
)
res = DataFrame(
np.zeros((len(mi), 2)), columns=["jim", "joe"], index=mi
).sort_index()
tm.assert_frame_equal(getattr(gr, agg)(), res)
@pytest.mark.parametrize(
"order, na_position, exp",
[
[
True,
"last",
list(range(5, 105)) + list(range(5)) + list(range(105, 110)),
],
[
True,
"first",
list(range(5)) + list(range(105, 110)) + list(range(5, 105)),
],
[
False,
"last",
list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110)),
],
[
False,
"first",
list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1)),
],
],
)
def test_lexsort_indexer(self, order, na_position, exp):
keys = [[np.nan] * 5 + list(range(100)) + [np.nan] * 5]
result = lexsort_indexer(keys, orders=order, na_position=na_position)
tm.assert_numpy_array_equal(result, np.array(exp, dtype=np.intp))
@pytest.mark.parametrize(
"ascending, na_position, exp",
[
[
True,
"last",
list(range(5, 105)) + list(range(5)) + list(range(105, 110)),
],
[
True,
"first",
list(range(5)) + list(range(105, 110)) + list(range(5, 105)),
],
[
False,
"last",
list(range(104, 4, -1)) + list(range(5)) + list(range(105, 110)),
],
[
False,
"first",
list(range(5)) + list(range(105, 110)) + list(range(104, 4, -1)),
],
],
)
def test_nargsort(self, ascending, na_position, exp):
# list places NaNs last, np.array(..., dtype="O") may not place NaNs first
items = np.array([np.nan] * 5 + list(range(100)) + [np.nan] * 5, dtype="O")
# mergesort is the most difficult to get right because we want it to be
# stable.
# According to numpy/core/tests/test_multiarray, """The number of
# sorted items must be greater than ~50 to check the actual algorithm
# because quick and merge sort fall over to insertion sort for small
# arrays."""
result = nargsort(
items, kind="mergesort", ascending=ascending, na_position=na_position
)
tm.assert_numpy_array_equal(result, np.array(exp), check_dtype=False)
class TestMerge:
def test_int64_overflow_outer_merge(self):
# #2690, combinatorial explosion
df1 = DataFrame(
np.random.default_rng(2).standard_normal((1000, 7)),
columns=list("ABCDEF") + ["G1"],
)
df2 = DataFrame(
np.random.default_rng(3).standard_normal((1000, 7)),
columns=list("ABCDEF") + ["G2"],
)
result = merge(df1, df2, how="outer")
assert len(result) == 2000
@pytest.mark.slow
def test_int64_overflow_check_sum_col(self, left_right):
left, right = left_right
out = merge(left, right, how="outer")
assert len(out) == len(left)
tm.assert_series_equal(out["left"], -out["right"], check_names=False)
result = out.iloc[:, :-2].sum(axis=1)
tm.assert_series_equal(out["left"], result, check_names=False)
assert result.name is None
@pytest.mark.slow
@pytest.mark.xfail(condition=not IS64, reason="assumes default int is int64")
@pytest.mark.parametrize("how", ["left", "right", "outer", "inner"])
def test_int64_overflow_how_merge(self, left_right, how):
left, right = left_right
out = merge(left, right, how="outer")
out.sort_values(out.columns.tolist(), inplace=True)
out.index = np.arange(len(out))
tm.assert_frame_equal(out, merge(left, right, how=how, sort=True))
@pytest.mark.slow
@pytest.mark.xfail(condition=not IS64, reason="assumes default int is int64")
def test_int64_overflow_sort_false_order(self, left_right):
left, right = left_right
# check that left merge w/ sort=False maintains left frame order
out = merge(left, right, how="left", sort=False)
tm.assert_frame_equal(left, out[left.columns.tolist()])
out = merge(right, left, how="left", sort=False)
tm.assert_frame_equal(right, out[right.columns.tolist()])
@pytest.mark.slow
@pytest.mark.xfail(condition=not IS64, reason="assumes default int is int64", strict=False)
@pytest.mark.parametrize("how", ["left", "right", "outer", "inner"])
@pytest.mark.parametrize("sort", [True, False])
def test_int64_overflow_one_to_many_none_match(self, how, sort):
# one-2-many/none match
low, high, n = -1 << 10, 1 << 10, 1 << 11
left = DataFrame(
np.random.default_rng(2).integers(low, high, (n, 7)).astype("int64"),
columns=list("ABCDEFG"),
)
# confirm that this is checking what it is supposed to check
shape = left.apply(Series.nunique).values
assert is_int64_overflow_possible(shape)
# add duplicates to left frame
left = concat([left, left], ignore_index=True)
right = DataFrame(
np.random.default_rng(3).integers(low, high, (n // 2, 7)).astype("int64"),
columns=list("ABCDEFG"),
)
# add duplicates & overlap with left to the right frame
i = np.random.default_rng(4).choice(len(left), n)
right = concat([right, right, left.iloc[i]], ignore_index=True)
left["left"] = np.random.default_rng(2).standard_normal(len(left))
right["right"] = np.random.default_rng(2).standard_normal(len(right))
# shuffle left & right frames
i = np.random.default_rng(5).permutation(len(left))
left = left.iloc[i].copy()
left.index = np.arange(len(left))
i = np.random.default_rng(6).permutation(len(right))
right = right.iloc[i].copy()
right.index = np.arange(len(right))
# manually compute outer merge
ldict, rdict = defaultdict(list), defaultdict(list)
for idx, row in left.set_index(list("ABCDEFG")).iterrows():
ldict[idx].append(row["left"])
for idx, row in right.set_index(list("ABCDEFG")).iterrows():
rdict[idx].append(row["right"])
vals = []
for k, lval in ldict.items():
rval = rdict.get(k, [np.nan])
for lv, rv in product(lval, rval):
vals.append(
k
+ (
lv,
rv,
)
)
for k, rval in rdict.items():
if k not in ldict:
vals.extend(
k
+ (
np.nan,
rv,
)
for rv in rval
)
def align(df):
df = df.sort_values(df.columns.tolist())
df.index = np.arange(len(df))
return df
out = DataFrame(vals, columns=list("ABCDEFG") + ["left", "right"])
out = align(out)
jmask = {
"left": out["left"].notna(),
"right": out["right"].notna(),
"inner": out["left"].notna() & out["right"].notna(),
"outer": np.ones(len(out), dtype="bool"),
}
mask = jmask[how]
frame = align(out[mask].copy())
assert mask.all() ^ mask.any() or how == "outer"
res = merge(left, right, how=how, sort=sort)
if sort:
kcols = list("ABCDEFG")
tm.assert_frame_equal(
res[kcols].copy(), res[kcols].sort_values(kcols, kind="mergesort")
)
# as in GH9092 dtypes break with outer/right join
# 2021-12-18: dtype does not break anymore
tm.assert_frame_equal(frame, align(res))
@pytest.mark.parametrize(
"codes_list, shape",
[
[
[
np.tile([0, 1, 2, 3, 0, 1, 2, 3], 100).astype(np.int64),
np.tile([0, 2, 4, 3, 0, 1, 2, 3], 100).astype(np.int64),
np.tile([5, 1, 0, 2, 3, 0, 5, 4], 100).astype(np.int64),
],
(4, 5, 6),
],
[
[
np.tile(np.arange(10000, dtype=np.int64), 5),
np.tile(np.arange(10000, dtype=np.int64), 5),
],
(10000, 10000),
],
],
)
def test_decons(codes_list, shape):
group_index = get_group_index(codes_list, shape, sort=True, xnull=True)
codes_list2 = _decons_group_index(group_index, shape)
for a, b in zip(codes_list, codes_list2):
tm.assert_numpy_array_equal(a, b)
class TestSafeSort:
@pytest.mark.parametrize(
"arg, exp",
[
[[3, 1, 2, 0, 4], [0, 1, 2, 3, 4]],
[
np.array(list("baaacb"), dtype=object),
np.array(list("aaabbc"), dtype=object),
],
[[], []],
],
)
def test_basic_sort(self, arg, exp):
result = safe_sort(np.array(arg))
expected = np.array(exp)
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("verify", [True, False])
@pytest.mark.parametrize(
"codes, exp_codes",
[
[[0, 1, 1, 2, 3, 0, -1, 4], [3, 1, 1, 2, 0, 3, -1, 4]],
[[], []],
],
)
def test_codes(self, verify, codes, exp_codes):
values = np.array([3, 1, 2, 0, 4])
expected = np.array([0, 1, 2, 3, 4])
result, result_codes = safe_sort(
values, codes, use_na_sentinel=True, verify=verify
)
expected_codes = np.array(exp_codes, dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
tm.assert_numpy_array_equal(result_codes, expected_codes)
def test_codes_out_of_bound(self):
values = np.array([3, 1, 2, 0, 4])
expected = np.array([0, 1, 2, 3, 4])
# out of bound indices
codes = [0, 101, 102, 2, 3, 0, 99, 4]
result, result_codes = safe_sort(values, codes, use_na_sentinel=True)
expected_codes = np.array([3, -1, -1, 2, 0, 3, -1, 4], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
tm.assert_numpy_array_equal(result_codes, expected_codes)
def test_mixed_integer(self):
values = np.array(["b", 1, 0, "a", 0, "b"], dtype=object)
result = safe_sort(values)
expected = np.array([0, 0, 1, "a", "b", "b"], dtype=object)
tm.assert_numpy_array_equal(result, expected)
def test_mixed_integer_with_codes(self):
values = np.array(["b", 1, 0, "a"], dtype=object)
codes = [0, 1, 2, 3, 0, -1, 1]
result, result_codes = safe_sort(values, codes)
expected = np.array([0, 1, "a", "b"], dtype=object)
expected_codes = np.array([3, 1, 0, 2, 3, -1, 1], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
tm.assert_numpy_array_equal(result_codes, expected_codes)
def test_unsortable(self):
# GH 13714
arr = np.array([1, 2, datetime.now(), 0, 3], dtype=object)
msg = "'[<>]' not supported between instances of .*"
with pytest.raises(TypeError, match=msg):
safe_sort(arr)
@pytest.mark.parametrize(
"arg, codes, err, msg",
[
[1, None, TypeError, "Only np.ndarray, ExtensionArray, and Index"],
[np.array([0, 1, 2]), 1, TypeError, "Only list-like objects or None"],
[np.array([0, 1, 2, 1]), [0, 1], ValueError, "values should be unique"],
],
)
def test_exceptions(self, arg, codes, err, msg):
with pytest.raises(err, match=msg):
safe_sort(values=arg, codes=codes)
@pytest.mark.parametrize(
"arg, exp", [[[1, 3, 2], [1, 2, 3]], [[1, 3, np.nan, 2], [1, 2, 3, np.nan]]]
)
def test_extension_array(self, arg, exp):
a = array(arg, dtype="Int64")
result = safe_sort(a)
expected = array(exp, dtype="Int64")
tm.assert_extension_array_equal(result, expected)
@pytest.mark.parametrize("verify", [True, False])
def test_extension_array_codes(self, verify):
a = array([1, 3, 2], dtype="Int64")
result, codes = safe_sort(a, [0, 1, -1, 2], use_na_sentinel=True, verify=verify)
expected_values = array([1, 2, 3], dtype="Int64")
expected_codes = np.array([0, 2, -1, 1], dtype=np.intp)
tm.assert_extension_array_equal(result, expected_values)
tm.assert_numpy_array_equal(codes, expected_codes)
def test_mixed_str_null(nulls_fixture):
values = np.array(["b", nulls_fixture, "a", "b"], dtype=object)
result = safe_sort(values)
expected = np.array(["a", "b", "b", nulls_fixture], dtype=object)
tm.assert_numpy_array_equal(result, expected)
def test_safe_sort_multiindex():
# GH#48412
arr1 = Series([2, 1, NA, NA], dtype="Int64")
arr2 = [2, 1, 3, 3]
midx = MultiIndex.from_arrays([arr1, arr2])
result = safe_sort(midx)
expected = MultiIndex.from_arrays(
[Series([1, 2, NA, NA], dtype="Int64"), [1, 2, 3, 3]]
)
tm.assert_index_equal(result, expected)
|