File: test_constructors.py

package info (click to toggle)
pandas 2.3.2%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 66,808 kB
  • sloc: python: 424,977; ansic: 9,190; sh: 264; xml: 102; makefile: 85
file content (285 lines) | stat: -rw-r--r-- 11,110 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import numpy as np
import pytest

import pandas.util._test_decorators as td
from pandas._libs import iNaT

from pandas.core.dtypes.dtypes import DatetimeTZDtype

import pandas as pd
import pandas._testing as tm
from pandas.core.arrays import DatetimeArray


class TestDatetimeArrayConstructor:
    def test_from_sequence_invalid_type(self):
        mi = pd.MultiIndex.from_product([np.arange(5), np.arange(5)])
        with pytest.raises(TypeError, match="Cannot create a DatetimeArray"):
            DatetimeArray._from_sequence(mi, dtype="M8[ns]")

    def test_only_1dim_accepted(self):
        arr = np.array([0, 1, 2, 3], dtype="M8[h]").astype("M8[ns]")

        depr_msg = "DatetimeArray.__init__ is deprecated"
        with tm.assert_produces_warning(FutureWarning, match=depr_msg):
            with pytest.raises(ValueError, match="Only 1-dimensional"):
                # 3-dim, we allow 2D to sneak in for ops purposes GH#29853
                DatetimeArray(arr.reshape(2, 2, 1))

        with tm.assert_produces_warning(FutureWarning, match=depr_msg):
            with pytest.raises(ValueError, match="Only 1-dimensional"):
                # 0-dim
                DatetimeArray(arr[[0]].squeeze())

    def test_freq_validation(self):
        # GH#24623 check that invalid instances cannot be created with the
        #  public constructor
        arr = np.arange(5, dtype=np.int64) * 3600 * 10**9

        msg = (
            "Inferred frequency h from passed values does not "
            "conform to passed frequency W-SUN"
        )
        depr_msg = "DatetimeArray.__init__ is deprecated"
        with tm.assert_produces_warning(FutureWarning, match=depr_msg):
            with pytest.raises(ValueError, match=msg):
                DatetimeArray(arr, freq="W")

    @pytest.mark.parametrize(
        "meth",
        [
            DatetimeArray._from_sequence,
            pd.to_datetime,
            pd.DatetimeIndex,
        ],
    )
    def test_mixing_naive_tzaware_raises(self, meth):
        # GH#24569
        arr = np.array([pd.Timestamp("2000"), pd.Timestamp("2000", tz="CET")])

        msg = (
            "Cannot mix tz-aware with tz-naive values|"
            "Tz-aware datetime.datetime cannot be converted "
            "to datetime64 unless utc=True"
        )

        for obj in [arr, arr[::-1]]:
            # check that we raise regardless of whether naive is found
            #  before aware or vice-versa
            with pytest.raises(ValueError, match=msg):
                meth(obj)

    def test_from_pandas_array(self):
        arr = pd.array(np.arange(5, dtype=np.int64)) * 3600 * 10**9

        result = DatetimeArray._from_sequence(arr, dtype="M8[ns]")._with_freq("infer")

        expected = pd.date_range("1970-01-01", periods=5, freq="h")._data
        tm.assert_datetime_array_equal(result, expected)

    def test_mismatched_timezone_raises(self):
        depr_msg = "DatetimeArray.__init__ is deprecated"
        with tm.assert_produces_warning(FutureWarning, match=depr_msg):
            arr = DatetimeArray(
                np.array(["2000-01-01T06:00:00"], dtype="M8[ns]"),
                dtype=DatetimeTZDtype(tz="US/Central"),
            )
        dtype = DatetimeTZDtype(tz="US/Eastern")
        msg = r"dtype=datetime64\[ns.*\] does not match data dtype datetime64\[ns.*\]"
        with tm.assert_produces_warning(FutureWarning, match=depr_msg):
            with pytest.raises(TypeError, match=msg):
                DatetimeArray(arr, dtype=dtype)

        # also with mismatched tzawareness
        with tm.assert_produces_warning(FutureWarning, match=depr_msg):
            with pytest.raises(TypeError, match=msg):
                DatetimeArray(arr, dtype=np.dtype("M8[ns]"))
        with tm.assert_produces_warning(FutureWarning, match=depr_msg):
            with pytest.raises(TypeError, match=msg):
                DatetimeArray(arr.tz_localize(None), dtype=arr.dtype)

    def test_non_array_raises(self):
        depr_msg = "DatetimeArray.__init__ is deprecated"
        with tm.assert_produces_warning(FutureWarning, match=depr_msg):
            with pytest.raises(ValueError, match="list"):
                DatetimeArray([1, 2, 3])

    def test_bool_dtype_raises(self):
        arr = np.array([1, 2, 3], dtype="bool")

        depr_msg = "DatetimeArray.__init__ is deprecated"
        msg = "Unexpected value for 'dtype': 'bool'. Must be"
        with tm.assert_produces_warning(FutureWarning, match=depr_msg):
            with pytest.raises(ValueError, match=msg):
                DatetimeArray(arr)

        msg = r"dtype bool cannot be converted to datetime64\[ns\]"
        with pytest.raises(TypeError, match=msg):
            DatetimeArray._from_sequence(arr, dtype="M8[ns]")

        with pytest.raises(TypeError, match=msg):
            pd.DatetimeIndex(arr)

        with pytest.raises(TypeError, match=msg):
            pd.to_datetime(arr)

    def test_incorrect_dtype_raises(self):
        depr_msg = "DatetimeArray.__init__ is deprecated"
        with tm.assert_produces_warning(FutureWarning, match=depr_msg):
            with pytest.raises(ValueError, match="Unexpected value for 'dtype'."):
                DatetimeArray(np.array([1, 2, 3], dtype="i8"), dtype="category")

        with tm.assert_produces_warning(FutureWarning, match=depr_msg):
            with pytest.raises(ValueError, match="Unexpected value for 'dtype'."):
                DatetimeArray(np.array([1, 2, 3], dtype="i8"), dtype="m8[s]")

        with tm.assert_produces_warning(FutureWarning, match=depr_msg):
            with pytest.raises(ValueError, match="Unexpected value for 'dtype'."):
                DatetimeArray(np.array([1, 2, 3], dtype="i8"), dtype="M8[D]")

    def test_mismatched_values_dtype_units(self):
        arr = np.array([1, 2, 3], dtype="M8[s]")
        dtype = np.dtype("M8[ns]")
        msg = "Values resolution does not match dtype."
        depr_msg = "DatetimeArray.__init__ is deprecated"

        with tm.assert_produces_warning(FutureWarning, match=depr_msg):
            with pytest.raises(ValueError, match=msg):
                DatetimeArray(arr, dtype=dtype)

        dtype2 = DatetimeTZDtype(tz="UTC", unit="ns")
        with tm.assert_produces_warning(FutureWarning, match=depr_msg):
            with pytest.raises(ValueError, match=msg):
                DatetimeArray(arr, dtype=dtype2)

    def test_freq_infer_raises(self):
        depr_msg = "DatetimeArray.__init__ is deprecated"
        with tm.assert_produces_warning(FutureWarning, match=depr_msg):
            with pytest.raises(ValueError, match="Frequency inference"):
                DatetimeArray(np.array([1, 2, 3], dtype="i8"), freq="infer")

    def test_copy(self):
        data = np.array([1, 2, 3], dtype="M8[ns]")
        arr = DatetimeArray._from_sequence(data, copy=False)
        assert arr._ndarray is data

        arr = DatetimeArray._from_sequence(data, copy=True)
        assert arr._ndarray is not data

    @pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"])
    def test_numpy_datetime_unit(self, unit):
        data = np.array([1, 2, 3], dtype=f"M8[{unit}]")
        arr = DatetimeArray._from_sequence(data)
        assert arr.unit == unit
        assert arr[0].unit == unit


class TestSequenceToDT64NS:
    def test_tz_dtype_mismatch_raises(self):
        arr = DatetimeArray._from_sequence(
            ["2000"], dtype=DatetimeTZDtype(tz="US/Central")
        )
        with pytest.raises(TypeError, match="data is already tz-aware"):
            DatetimeArray._from_sequence(arr, dtype=DatetimeTZDtype(tz="UTC"))

    def test_tz_dtype_matches(self):
        dtype = DatetimeTZDtype(tz="US/Central")
        arr = DatetimeArray._from_sequence(["2000"], dtype=dtype)
        result = DatetimeArray._from_sequence(arr, dtype=dtype)
        tm.assert_equal(arr, result)

    @pytest.mark.parametrize("order", ["F", "C"])
    def test_2d(self, order):
        dti = pd.date_range("2016-01-01", periods=6, tz="US/Pacific")
        arr = np.array(dti, dtype=object).reshape(3, 2)
        if order == "F":
            arr = arr.T

        res = DatetimeArray._from_sequence(arr, dtype=dti.dtype)
        expected = DatetimeArray._from_sequence(arr.ravel(), dtype=dti.dtype).reshape(
            arr.shape
        )
        tm.assert_datetime_array_equal(res, expected)


# ----------------------------------------------------------------------------
# Arrow interaction


EXTREME_VALUES = [0, 123456789, None, iNaT, 2**63 - 1, -(2**63) + 1]
FINE_TO_COARSE_SAFE = [123_000_000_000, None, -123_000_000_000]
COARSE_TO_FINE_SAFE = [123, None, -123]


@pytest.mark.parametrize(
    ("pa_unit", "pd_unit", "pa_tz", "pd_tz", "data"),
    [
        ("s", "s", "UTC", "UTC", EXTREME_VALUES),
        ("ms", "ms", "UTC", "Europe/Berlin", EXTREME_VALUES),
        ("us", "us", "US/Eastern", "UTC", EXTREME_VALUES),
        ("ns", "ns", "US/Central", "Asia/Kolkata", EXTREME_VALUES),
        ("ns", "s", "UTC", "UTC", FINE_TO_COARSE_SAFE),
        ("us", "ms", "UTC", "Europe/Berlin", FINE_TO_COARSE_SAFE),
        ("ms", "us", "US/Eastern", "UTC", COARSE_TO_FINE_SAFE),
        ("s", "ns", "US/Central", "Asia/Kolkata", COARSE_TO_FINE_SAFE),
    ],
)
def test_from_arrow_with_different_units_and_timezones_with(
    pa_unit, pd_unit, pa_tz, pd_tz, data
):
    pa = td.versioned_importorskip("pyarrow")

    pa_type = pa.timestamp(pa_unit, tz=pa_tz)
    arr = pa.array(data, type=pa_type)
    dtype = DatetimeTZDtype(unit=pd_unit, tz=pd_tz)

    result = dtype.__from_arrow__(arr)
    expected = DatetimeArray._from_sequence(data, dtype=f"M8[{pa_unit}, UTC]").astype(
        dtype, copy=False
    )
    tm.assert_extension_array_equal(result, expected)

    result = dtype.__from_arrow__(pa.chunked_array([arr]))
    tm.assert_extension_array_equal(result, expected)


@pytest.mark.parametrize(
    ("unit", "tz"),
    [
        ("s", "UTC"),
        ("ms", "Europe/Berlin"),
        ("us", "US/Eastern"),
        ("ns", "Asia/Kolkata"),
        ("ns", "UTC"),
    ],
)
def test_from_arrow_from_empty(unit, tz):
    pa = td.versioned_importorskip("pyarrow")

    data = []
    arr = pa.array(data)
    dtype = DatetimeTZDtype(unit=unit, tz=tz)

    result = dtype.__from_arrow__(arr)
    expected = DatetimeArray._from_sequence(np.array(data, dtype=f"datetime64[{unit}]"))
    expected = expected.tz_localize(tz=tz)
    tm.assert_extension_array_equal(result, expected)

    result = dtype.__from_arrow__(pa.chunked_array([arr]))
    tm.assert_extension_array_equal(result, expected)


def test_from_arrow_from_integers():
    pa = td.versioned_importorskip("pyarrow")

    data = [0, 123456789, None, 2**63 - 1, iNaT, -123456789]
    arr = pa.array(data)
    dtype = DatetimeTZDtype(unit="ns", tz="UTC")

    result = dtype.__from_arrow__(arr)
    expected = DatetimeArray._from_sequence(np.array(data, dtype="datetime64[ns]"))
    expected = expected.tz_localize("UTC")
    tm.assert_extension_array_equal(result, expected)

    result = dtype.__from_arrow__(pa.chunked_array([arr]))
    tm.assert_extension_array_equal(result, expected)