File: test_logical_ops.py

package info (click to toggle)
pandas 2.3.2%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 66,808 kB
  • sloc: python: 424,977; ansic: 9,190; sh: 264; xml: 102; makefile: 85
file content (215 lines) | stat: -rw-r--r-- 7,305 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import operator
import re

import numpy as np
import pytest

from pandas import (
    CategoricalIndex,
    DataFrame,
    Interval,
    Series,
    isnull,
)
import pandas._testing as tm


class TestDataFrameLogicalOperators:
    # &, |, ^

    @pytest.mark.parametrize(
        "left, right, op, expected",
        [
            (
                [True, False, np.nan],
                [True, False, True],
                operator.and_,
                [True, False, False],
            ),
            (
                [True, False, True],
                [True, False, np.nan],
                operator.and_,
                [True, False, False],
            ),
            (
                [True, False, np.nan],
                [True, False, True],
                operator.or_,
                [True, False, False],
            ),
            (
                [True, False, True],
                [True, False, np.nan],
                operator.or_,
                [True, False, True],
            ),
        ],
    )
    def test_logical_operators_nans(self, left, right, op, expected, frame_or_series):
        # GH#13896
        result = op(frame_or_series(left), frame_or_series(right))
        expected = frame_or_series(expected)

        tm.assert_equal(result, expected)

    def test_logical_ops_empty_frame(self):
        # GH#5808
        # empty frames, non-mixed dtype
        df = DataFrame(index=[1])

        result = df & df
        tm.assert_frame_equal(result, df)

        result = df | df
        tm.assert_frame_equal(result, df)

        df2 = DataFrame(index=[1, 2])
        result = df & df2
        tm.assert_frame_equal(result, df2)

        dfa = DataFrame(index=[1], columns=["A"])

        result = dfa & dfa
        expected = DataFrame(False, index=[1], columns=["A"])
        tm.assert_frame_equal(result, expected)

    def test_logical_ops_bool_frame(self):
        # GH#5808
        df1a_bool = DataFrame(True, index=[1], columns=["A"])

        result = df1a_bool & df1a_bool
        tm.assert_frame_equal(result, df1a_bool)

        result = df1a_bool | df1a_bool
        tm.assert_frame_equal(result, df1a_bool)

    def test_logical_ops_int_frame(self):
        # GH#5808
        df1a_int = DataFrame(1, index=[1], columns=["A"])
        df1a_bool = DataFrame(True, index=[1], columns=["A"])

        result = df1a_int | df1a_bool
        tm.assert_frame_equal(result, df1a_bool)

        # Check that this matches Series behavior
        res_ser = df1a_int["A"] | df1a_bool["A"]
        tm.assert_series_equal(res_ser, df1a_bool["A"])

    def test_logical_ops_invalid(self, using_infer_string):
        # GH#5808

        df1 = DataFrame(1.0, index=[1], columns=["A"])
        df2 = DataFrame(True, index=[1], columns=["A"])
        msg = re.escape("unsupported operand type(s) for |: 'float' and 'bool'")
        with pytest.raises(TypeError, match=msg):
            df1 | df2

        df1 = DataFrame("foo", index=[1], columns=["A"])
        df2 = DataFrame(True, index=[1], columns=["A"])
        if using_infer_string and df1["A"].dtype.storage == "pyarrow":
            msg = "operation 'or_' not supported for dtype 'str'"
        else:
            msg = re.escape("unsupported operand type(s) for |: 'str' and 'bool'")
        with pytest.raises(TypeError, match=msg):
            df1 | df2

    def test_logical_operators(self):
        def _check_bin_op(op):
            result = op(df1, df2)
            expected = DataFrame(
                op(df1.values, df2.values), index=df1.index, columns=df1.columns
            )
            assert result.values.dtype == np.bool_
            tm.assert_frame_equal(result, expected)

        def _check_unary_op(op):
            result = op(df1)
            expected = DataFrame(op(df1.values), index=df1.index, columns=df1.columns)
            assert result.values.dtype == np.bool_
            tm.assert_frame_equal(result, expected)

        df1 = {
            "a": {"a": True, "b": False, "c": False, "d": True, "e": True},
            "b": {"a": False, "b": True, "c": False, "d": False, "e": False},
            "c": {"a": False, "b": False, "c": True, "d": False, "e": False},
            "d": {"a": True, "b": False, "c": False, "d": True, "e": True},
            "e": {"a": True, "b": False, "c": False, "d": True, "e": True},
        }

        df2 = {
            "a": {"a": True, "b": False, "c": True, "d": False, "e": False},
            "b": {"a": False, "b": True, "c": False, "d": False, "e": False},
            "c": {"a": True, "b": False, "c": True, "d": False, "e": False},
            "d": {"a": False, "b": False, "c": False, "d": True, "e": False},
            "e": {"a": False, "b": False, "c": False, "d": False, "e": True},
        }

        df1 = DataFrame(df1)
        df2 = DataFrame(df2)

        _check_bin_op(operator.and_)
        _check_bin_op(operator.or_)
        _check_bin_op(operator.xor)

        _check_unary_op(operator.inv)  # TODO: belongs elsewhere

    @pytest.mark.filterwarnings("ignore:Downcasting object dtype arrays:FutureWarning")
    def test_logical_with_nas(self):
        d = DataFrame({"a": [np.nan, False], "b": [True, True]})

        # GH4947
        # bool comparisons should return bool
        result = d["a"] | d["b"]
        expected = Series([False, True])
        tm.assert_series_equal(result, expected)

        # GH4604, automatic casting here
        result = d["a"].fillna(False) | d["b"]
        expected = Series([True, True])
        tm.assert_series_equal(result, expected)

        msg = "The 'downcast' keyword in fillna is deprecated"
        with tm.assert_produces_warning(FutureWarning, match=msg):
            result = d["a"].fillna(False, downcast=False) | d["b"]
        expected = Series([True, True])
        tm.assert_series_equal(result, expected)

    def test_logical_ops_categorical_columns(self):
        # GH#38367
        intervals = [Interval(1, 2), Interval(3, 4)]
        data = DataFrame(
            [[1, np.nan], [2, np.nan]],
            columns=CategoricalIndex(
                intervals, categories=intervals + [Interval(5, 6)]
            ),
        )
        mask = DataFrame(
            [[False, False], [False, False]], columns=data.columns, dtype=bool
        )
        result = mask | isnull(data)
        expected = DataFrame(
            [[False, True], [False, True]],
            columns=CategoricalIndex(
                intervals, categories=intervals + [Interval(5, 6)]
            ),
        )
        tm.assert_frame_equal(result, expected)

    def test_int_dtype_different_index_not_bool(self):
        # GH 52500
        df1 = DataFrame([1, 2, 3], index=[10, 11, 23], columns=["a"])
        df2 = DataFrame([10, 20, 30], index=[11, 10, 23], columns=["a"])
        result = np.bitwise_xor(df1, df2)
        expected = DataFrame([21, 8, 29], index=[10, 11, 23], columns=["a"])
        tm.assert_frame_equal(result, expected)

        result = df1 ^ df2
        tm.assert_frame_equal(result, expected)

    def test_different_dtypes_different_index_raises(self):
        # GH 52538
        df1 = DataFrame([1, 2], index=["a", "b"])
        df2 = DataFrame([3, 4], index=["b", "c"])
        with pytest.raises(TypeError, match="unsupported operand type"):
            df1 & df2