1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
|
"""
Tests the 'read_fwf' function in parsers.py. This
test suite is independent of the others because the
engine is set to 'python-fwf' internally.
"""
from datetime import datetime
from io import (
BytesIO,
StringIO,
)
from pathlib import Path
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas.errors import EmptyDataError
import pandas as pd
from pandas import (
DataFrame,
DatetimeIndex,
)
import pandas._testing as tm
from pandas.io.common import urlopen
from pandas.io.parsers import (
read_csv,
read_fwf,
)
def test_basic():
data = """\
A B C D
201158 360.242940 149.910199 11950.7
201159 444.953632 166.985655 11788.4
201160 364.136849 183.628767 11806.2
201161 413.836124 184.375703 11916.8
201162 502.953953 173.237159 12468.3
"""
result = read_fwf(StringIO(data))
expected = DataFrame(
[
[201158, 360.242940, 149.910199, 11950.7],
[201159, 444.953632, 166.985655, 11788.4],
[201160, 364.136849, 183.628767, 11806.2],
[201161, 413.836124, 184.375703, 11916.8],
[201162, 502.953953, 173.237159, 12468.3],
],
columns=["A", "B", "C", "D"],
)
tm.assert_frame_equal(result, expected)
def test_colspecs():
data = """\
A B C D E
201158 360.242940 149.910199 11950.7
201159 444.953632 166.985655 11788.4
201160 364.136849 183.628767 11806.2
201161 413.836124 184.375703 11916.8
201162 502.953953 173.237159 12468.3
"""
colspecs = [(0, 4), (4, 8), (8, 20), (21, 33), (34, 43)]
result = read_fwf(StringIO(data), colspecs=colspecs)
expected = DataFrame(
[
[2011, 58, 360.242940, 149.910199, 11950.7],
[2011, 59, 444.953632, 166.985655, 11788.4],
[2011, 60, 364.136849, 183.628767, 11806.2],
[2011, 61, 413.836124, 184.375703, 11916.8],
[2011, 62, 502.953953, 173.237159, 12468.3],
],
columns=["A", "B", "C", "D", "E"],
)
tm.assert_frame_equal(result, expected)
def test_widths():
data = """\
A B C D E
2011 58 360.242940 149.910199 11950.7
2011 59 444.953632 166.985655 11788.4
2011 60 364.136849 183.628767 11806.2
2011 61 413.836124 184.375703 11916.8
2011 62 502.953953 173.237159 12468.3
"""
result = read_fwf(StringIO(data), widths=[5, 5, 13, 13, 7])
expected = DataFrame(
[
[2011, 58, 360.242940, 149.910199, 11950.7],
[2011, 59, 444.953632, 166.985655, 11788.4],
[2011, 60, 364.136849, 183.628767, 11806.2],
[2011, 61, 413.836124, 184.375703, 11916.8],
[2011, 62, 502.953953, 173.237159, 12468.3],
],
columns=["A", "B", "C", "D", "E"],
)
tm.assert_frame_equal(result, expected)
def test_non_space_filler():
# From Thomas Kluyver:
#
# Apparently, some non-space filler characters can be seen, this is
# supported by specifying the 'delimiter' character:
#
# http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.wbit.612.help.config.doc/topics/rfixwidth.html
data = """\
A~~~~B~~~~C~~~~~~~~~~~~D~~~~~~~~~~~~E
201158~~~~360.242940~~~149.910199~~~11950.7
201159~~~~444.953632~~~166.985655~~~11788.4
201160~~~~364.136849~~~183.628767~~~11806.2
201161~~~~413.836124~~~184.375703~~~11916.8
201162~~~~502.953953~~~173.237159~~~12468.3
"""
colspecs = [(0, 4), (4, 8), (8, 20), (21, 33), (34, 43)]
result = read_fwf(StringIO(data), colspecs=colspecs, delimiter="~")
expected = DataFrame(
[
[2011, 58, 360.242940, 149.910199, 11950.7],
[2011, 59, 444.953632, 166.985655, 11788.4],
[2011, 60, 364.136849, 183.628767, 11806.2],
[2011, 61, 413.836124, 184.375703, 11916.8],
[2011, 62, 502.953953, 173.237159, 12468.3],
],
columns=["A", "B", "C", "D", "E"],
)
tm.assert_frame_equal(result, expected)
def test_over_specified():
data = """\
A B C D E
201158 360.242940 149.910199 11950.7
201159 444.953632 166.985655 11788.4
201160 364.136849 183.628767 11806.2
201161 413.836124 184.375703 11916.8
201162 502.953953 173.237159 12468.3
"""
colspecs = [(0, 4), (4, 8), (8, 20), (21, 33), (34, 43)]
with pytest.raises(ValueError, match="must specify only one of"):
read_fwf(StringIO(data), colspecs=colspecs, widths=[6, 10, 10, 7])
def test_under_specified():
data = """\
A B C D E
201158 360.242940 149.910199 11950.7
201159 444.953632 166.985655 11788.4
201160 364.136849 183.628767 11806.2
201161 413.836124 184.375703 11916.8
201162 502.953953 173.237159 12468.3
"""
with pytest.raises(ValueError, match="Must specify either"):
read_fwf(StringIO(data), colspecs=None, widths=None)
def test_read_csv_compat():
csv_data = """\
A,B,C,D,E
2011,58,360.242940,149.910199,11950.7
2011,59,444.953632,166.985655,11788.4
2011,60,364.136849,183.628767,11806.2
2011,61,413.836124,184.375703,11916.8
2011,62,502.953953,173.237159,12468.3
"""
expected = read_csv(StringIO(csv_data), engine="python")
fwf_data = """\
A B C D E
201158 360.242940 149.910199 11950.7
201159 444.953632 166.985655 11788.4
201160 364.136849 183.628767 11806.2
201161 413.836124 184.375703 11916.8
201162 502.953953 173.237159 12468.3
"""
colspecs = [(0, 4), (4, 8), (8, 20), (21, 33), (34, 43)]
result = read_fwf(StringIO(fwf_data), colspecs=colspecs)
tm.assert_frame_equal(result, expected)
def test_bytes_io_input():
data = BytesIO("שלום\nשלום".encode()) # noqa: RUF001
result = read_fwf(data, widths=[2, 2], encoding="utf8")
expected = DataFrame([["של", "ום"]], columns=["של", "ום"])
tm.assert_frame_equal(result, expected)
def test_fwf_colspecs_is_list_or_tuple():
data = """index,A,B,C,D
foo,2,3,4,5
bar,7,8,9,10
baz,12,13,14,15
qux,12,13,14,15
foo2,12,13,14,15
bar2,12,13,14,15
"""
msg = "column specifications must be a list or tuple.+"
with pytest.raises(TypeError, match=msg):
read_fwf(StringIO(data), colspecs={"a": 1}, delimiter=",")
def test_fwf_colspecs_is_list_or_tuple_of_two_element_tuples():
data = """index,A,B,C,D
foo,2,3,4,5
bar,7,8,9,10
baz,12,13,14,15
qux,12,13,14,15
foo2,12,13,14,15
bar2,12,13,14,15
"""
msg = "Each column specification must be.+"
with pytest.raises(TypeError, match=msg):
read_fwf(StringIO(data), colspecs=[("a", 1)])
@pytest.mark.parametrize(
"colspecs,exp_data",
[
([(0, 3), (3, None)], [[123, 456], [456, 789]]),
([(None, 3), (3, 6)], [[123, 456], [456, 789]]),
([(0, None), (3, None)], [[123456, 456], [456789, 789]]),
([(None, None), (3, 6)], [[123456, 456], [456789, 789]]),
],
)
def test_fwf_colspecs_none(colspecs, exp_data):
# see gh-7079
data = """\
123456
456789
"""
expected = DataFrame(exp_data)
result = read_fwf(StringIO(data), colspecs=colspecs, header=None)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"infer_nrows,exp_data",
[
# infer_nrows --> colspec == [(2, 3), (5, 6)]
(1, [[1, 2], [3, 8]]),
# infer_nrows > number of rows
(10, [[1, 2], [123, 98]]),
],
)
def test_fwf_colspecs_infer_nrows(infer_nrows, exp_data):
# see gh-15138
data = """\
1 2
123 98
"""
expected = DataFrame(exp_data)
result = read_fwf(StringIO(data), infer_nrows=infer_nrows, header=None)
tm.assert_frame_equal(result, expected)
def test_fwf_regression():
# see gh-3594
#
# Turns out "T060" is parsable as a datetime slice!
tz_list = [1, 10, 20, 30, 60, 80, 100]
widths = [16] + [8] * len(tz_list)
names = ["SST"] + [f"T{z:03d}" for z in tz_list[1:]]
data = """ 2009164202000 9.5403 9.4105 8.6571 7.8372 6.0612 5.8843 5.5192
2009164203000 9.5435 9.2010 8.6167 7.8176 6.0804 5.8728 5.4869
2009164204000 9.5873 9.1326 8.4694 7.5889 6.0422 5.8526 5.4657
2009164205000 9.5810 9.0896 8.4009 7.4652 6.0322 5.8189 5.4379
2009164210000 9.6034 9.0897 8.3822 7.4905 6.0908 5.7904 5.4039
"""
with tm.assert_produces_warning(FutureWarning, match="use 'date_format' instead"):
result = read_fwf(
StringIO(data),
index_col=0,
header=None,
names=names,
widths=widths,
parse_dates=True,
date_parser=lambda s: datetime.strptime(s, "%Y%j%H%M%S"),
)
expected = DataFrame(
[
[9.5403, 9.4105, 8.6571, 7.8372, 6.0612, 5.8843, 5.5192],
[9.5435, 9.2010, 8.6167, 7.8176, 6.0804, 5.8728, 5.4869],
[9.5873, 9.1326, 8.4694, 7.5889, 6.0422, 5.8526, 5.4657],
[9.5810, 9.0896, 8.4009, 7.4652, 6.0322, 5.8189, 5.4379],
[9.6034, 9.0897, 8.3822, 7.4905, 6.0908, 5.7904, 5.4039],
],
index=DatetimeIndex(
[
"2009-06-13 20:20:00",
"2009-06-13 20:30:00",
"2009-06-13 20:40:00",
"2009-06-13 20:50:00",
"2009-06-13 21:00:00",
]
),
columns=["SST", "T010", "T020", "T030", "T060", "T080", "T100"],
)
tm.assert_frame_equal(result, expected)
result = read_fwf(
StringIO(data),
index_col=0,
header=None,
names=names,
widths=widths,
parse_dates=True,
date_format="%Y%j%H%M%S",
)
tm.assert_frame_equal(result, expected)
def test_fwf_for_uint8():
data = """1421302965.213420 PRI=3 PGN=0xef00 DST=0x17 SRC=0x28 04 154 00 00 00 00 00 127
1421302964.226776 PRI=6 PGN=0xf002 SRC=0x47 243 00 00 255 247 00 00 71""" # noqa: E501
df = read_fwf(
StringIO(data),
colspecs=[(0, 17), (25, 26), (33, 37), (49, 51), (58, 62), (63, 1000)],
names=["time", "pri", "pgn", "dst", "src", "data"],
converters={
"pgn": lambda x: int(x, 16),
"src": lambda x: int(x, 16),
"dst": lambda x: int(x, 16),
"data": lambda x: len(x.split(" ")),
},
)
expected = DataFrame(
[
[1421302965.213420, 3, 61184, 23, 40, 8],
[1421302964.226776, 6, 61442, None, 71, 8],
],
columns=["time", "pri", "pgn", "dst", "src", "data"],
)
expected["dst"] = expected["dst"].astype(object)
tm.assert_frame_equal(df, expected)
@pytest.mark.parametrize("comment", ["#", "~", "!"])
def test_fwf_comment(comment):
data = """\
1 2. 4 #hello world
5 NaN 10.0
"""
data = data.replace("#", comment)
colspecs = [(0, 3), (4, 9), (9, 25)]
expected = DataFrame([[1, 2.0, 4], [5, np.nan, 10.0]])
result = read_fwf(StringIO(data), colspecs=colspecs, header=None, comment=comment)
tm.assert_almost_equal(result, expected)
def test_fwf_skip_blank_lines():
data = """
A B C D
201158 360.242940 149.910199 11950.7
201159 444.953632 166.985655 11788.4
201162 502.953953 173.237159 12468.3
"""
result = read_fwf(StringIO(data), skip_blank_lines=True)
expected = DataFrame(
[
[201158, 360.242940, 149.910199, 11950.7],
[201159, 444.953632, 166.985655, 11788.4],
[201162, 502.953953, 173.237159, 12468.3],
],
columns=["A", "B", "C", "D"],
)
tm.assert_frame_equal(result, expected)
data = """\
A B C D
201158 360.242940 149.910199 11950.7
201159 444.953632 166.985655 11788.4
201162 502.953953 173.237159 12468.3
"""
result = read_fwf(StringIO(data), skip_blank_lines=False)
expected = DataFrame(
[
[201158, 360.242940, 149.910199, 11950.7],
[201159, 444.953632, 166.985655, 11788.4],
[np.nan, np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan, np.nan],
[201162, 502.953953, 173.237159, 12468.3],
],
columns=["A", "B", "C", "D"],
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("thousands", [",", "#", "~"])
def test_fwf_thousands(thousands):
data = """\
1 2,334.0 5
10 13 10.
"""
data = data.replace(",", thousands)
colspecs = [(0, 3), (3, 11), (12, 16)]
expected = DataFrame([[1, 2334.0, 5], [10, 13, 10.0]])
result = read_fwf(
StringIO(data), header=None, colspecs=colspecs, thousands=thousands
)
tm.assert_almost_equal(result, expected)
@pytest.mark.parametrize("header", [True, False])
def test_bool_header_arg(header):
# see gh-6114
data = """\
MyColumn
a
b
a
b"""
msg = "Passing a bool to header is invalid"
with pytest.raises(TypeError, match=msg):
read_fwf(StringIO(data), header=header)
def test_full_file():
# File with all values.
test = """index A B C
2000-01-03T00:00:00 0.980268513777 3 foo
2000-01-04T00:00:00 1.04791624281 -4 bar
2000-01-05T00:00:00 0.498580885705 73 baz
2000-01-06T00:00:00 1.12020151869 1 foo
2000-01-07T00:00:00 0.487094399463 0 bar
2000-01-10T00:00:00 0.836648671666 2 baz
2000-01-11T00:00:00 0.157160753327 34 foo"""
colspecs = ((0, 19), (21, 35), (38, 40), (42, 45))
expected = read_fwf(StringIO(test), colspecs=colspecs)
result = read_fwf(StringIO(test))
tm.assert_frame_equal(result, expected)
def test_full_file_with_missing():
# File with missing values.
test = """index A B C
2000-01-03T00:00:00 0.980268513777 3 foo
2000-01-04T00:00:00 1.04791624281 -4 bar
0.498580885705 73 baz
2000-01-06T00:00:00 1.12020151869 1 foo
2000-01-07T00:00:00 0 bar
2000-01-10T00:00:00 0.836648671666 2 baz
34"""
colspecs = ((0, 19), (21, 35), (38, 40), (42, 45))
expected = read_fwf(StringIO(test), colspecs=colspecs)
result = read_fwf(StringIO(test))
tm.assert_frame_equal(result, expected)
def test_full_file_with_spaces():
# File with spaces in columns.
test = """
Account Name Balance CreditLimit AccountCreated
101 Keanu Reeves 9315.45 10000.00 1/17/1998
312 Gerard Butler 90.00 1000.00 8/6/2003
868 Jennifer Love Hewitt 0 17000.00 5/25/1985
761 Jada Pinkett-Smith 49654.87 100000.00 12/5/2006
317 Bill Murray 789.65 5000.00 2/5/2007
""".strip(
"\r\n"
)
colspecs = ((0, 7), (8, 28), (30, 38), (42, 53), (56, 70))
expected = read_fwf(StringIO(test), colspecs=colspecs)
result = read_fwf(StringIO(test))
tm.assert_frame_equal(result, expected)
def test_full_file_with_spaces_and_missing():
# File with spaces and missing values in columns.
test = """
Account Name Balance CreditLimit AccountCreated
101 10000.00 1/17/1998
312 Gerard Butler 90.00 1000.00 8/6/2003
868 5/25/1985
761 Jada Pinkett-Smith 49654.87 100000.00 12/5/2006
317 Bill Murray 789.65
""".strip(
"\r\n"
)
colspecs = ((0, 7), (8, 28), (30, 38), (42, 53), (56, 70))
expected = read_fwf(StringIO(test), colspecs=colspecs)
result = read_fwf(StringIO(test))
tm.assert_frame_equal(result, expected)
def test_messed_up_data():
# Completely messed up file.
test = """
Account Name Balance Credit Limit Account Created
101 10000.00 1/17/1998
312 Gerard Butler 90.00 1000.00
761 Jada Pinkett-Smith 49654.87 100000.00 12/5/2006
317 Bill Murray 789.65
""".strip(
"\r\n"
)
colspecs = ((2, 10), (15, 33), (37, 45), (49, 61), (64, 79))
expected = read_fwf(StringIO(test), colspecs=colspecs)
result = read_fwf(StringIO(test))
tm.assert_frame_equal(result, expected)
def test_multiple_delimiters():
test = r"""
col1~~~~~col2 col3++++++++++++++++++col4
~~22.....11.0+++foo~~~~~~~~~~Keanu Reeves
33+++122.33\\\bar.........Gerard Butler
++44~~~~12.01 baz~~Jennifer Love Hewitt
~~55 11+++foo++++Jada Pinkett-Smith
..66++++++.03~~~bar Bill Murray
""".strip(
"\r\n"
)
delimiter = " +~.\\"
colspecs = ((0, 4), (7, 13), (15, 19), (21, 41))
expected = read_fwf(StringIO(test), colspecs=colspecs, delimiter=delimiter)
result = read_fwf(StringIO(test), delimiter=delimiter)
tm.assert_frame_equal(result, expected)
def test_variable_width_unicode():
data = """
שלום שלום
ום שלל
של ום
""".strip(
"\r\n"
)
encoding = "utf8"
kwargs = {"header": None, "encoding": encoding}
expected = read_fwf(
BytesIO(data.encode(encoding)), colspecs=[(0, 4), (5, 9)], **kwargs
)
result = read_fwf(BytesIO(data.encode(encoding)), **kwargs)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dtype", [{}, {"a": "float64", "b": str, "c": "int32"}])
def test_dtype(dtype):
data = """ a b c
1 2 3.2
3 4 5.2
"""
colspecs = [(0, 5), (5, 10), (10, None)]
result = read_fwf(StringIO(data), colspecs=colspecs, dtype=dtype)
expected = DataFrame(
{"a": [1, 3], "b": [2, 4], "c": [3.2, 5.2]}, columns=["a", "b", "c"]
)
for col, dt in dtype.items():
expected[col] = expected[col].astype(dt)
tm.assert_frame_equal(result, expected)
def test_skiprows_inference():
# see gh-11256
data = """
Text contained in the file header
DataCol1 DataCol2
0.0 1.0
101.6 956.1
""".strip()
skiprows = 2
depr_msg = "The 'delim_whitespace' keyword in pd.read_csv is deprecated"
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
expected = read_csv(StringIO(data), skiprows=skiprows, delim_whitespace=True)
result = read_fwf(StringIO(data), skiprows=skiprows)
tm.assert_frame_equal(result, expected)
def test_skiprows_by_index_inference():
data = """
To be skipped
Not To Be Skipped
Once more to be skipped
123 34 8 123
456 78 9 456
""".strip()
skiprows = [0, 2]
depr_msg = "The 'delim_whitespace' keyword in pd.read_csv is deprecated"
with tm.assert_produces_warning(FutureWarning, match=depr_msg):
expected = read_csv(StringIO(data), skiprows=skiprows, delim_whitespace=True)
result = read_fwf(StringIO(data), skiprows=skiprows)
tm.assert_frame_equal(result, expected)
def test_skiprows_inference_empty():
data = """
AA BBB C
12 345 6
78 901 2
""".strip()
msg = "No rows from which to infer column width"
with pytest.raises(EmptyDataError, match=msg):
read_fwf(StringIO(data), skiprows=3)
def test_whitespace_preservation():
# see gh-16772
header = None
csv_data = """
a ,bbb
cc,dd """
fwf_data = """
a bbb
ccdd """
result = read_fwf(
StringIO(fwf_data), widths=[3, 3], header=header, skiprows=[0], delimiter="\n\t"
)
expected = read_csv(StringIO(csv_data), header=header)
tm.assert_frame_equal(result, expected)
def test_default_delimiter():
header = None
csv_data = """
a,bbb
cc,dd"""
fwf_data = """
a \tbbb
cc\tdd """
result = read_fwf(StringIO(fwf_data), widths=[3, 3], header=header, skiprows=[0])
expected = read_csv(StringIO(csv_data), header=header)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("infer", [True, False])
def test_fwf_compression(compression_only, infer, compression_to_extension):
data = """1111111111
2222222222
3333333333""".strip()
compression = compression_only
extension = compression_to_extension[compression]
kwargs = {"widths": [5, 5], "names": ["one", "two"]}
expected = read_fwf(StringIO(data), **kwargs)
data = bytes(data, encoding="utf-8")
with tm.ensure_clean(filename="tmp." + extension) as path:
tm.write_to_compressed(compression, path, data)
if infer is not None:
kwargs["compression"] = "infer" if infer else compression
result = read_fwf(path, **kwargs)
tm.assert_frame_equal(result, expected)
def test_binary_mode():
"""
read_fwf supports opening files in binary mode.
GH 18035.
"""
data = """aaa aaa aaa
bba bab b a"""
df_reference = DataFrame(
[["bba", "bab", "b a"]], columns=["aaa", "aaa.1", "aaa.2"], index=[0]
)
with tm.ensure_clean() as path:
Path(path).write_text(data, encoding="utf-8")
with open(path, "rb") as file:
df = read_fwf(file)
file.seek(0)
tm.assert_frame_equal(df, df_reference)
@pytest.mark.parametrize("memory_map", [True, False])
def test_encoding_mmap(memory_map):
"""
encoding should be working, even when using a memory-mapped file.
GH 23254.
"""
encoding = "iso8859_1"
with tm.ensure_clean() as path:
Path(path).write_bytes(" 1 A Ä 2\n".encode(encoding))
df = read_fwf(
path,
header=None,
widths=[2, 2, 2, 2],
encoding=encoding,
memory_map=memory_map,
)
df_reference = DataFrame([[1, "A", "Ä", 2]])
tm.assert_frame_equal(df, df_reference)
@pytest.mark.parametrize(
"colspecs, names, widths, index_col",
[
(
[(0, 6), (6, 12), (12, 18), (18, None)],
list("abcde"),
None,
None,
),
(
None,
list("abcde"),
[6] * 4,
None,
),
(
[(0, 6), (6, 12), (12, 18), (18, None)],
list("abcde"),
None,
True,
),
(
None,
list("abcde"),
[6] * 4,
False,
),
(
None,
list("abcde"),
[6] * 4,
True,
),
(
[(0, 6), (6, 12), (12, 18), (18, None)],
list("abcde"),
None,
False,
),
],
)
def test_len_colspecs_len_names(colspecs, names, widths, index_col):
# GH#40830
data = """col1 col2 col3 col4
bab ba 2"""
msg = "Length of colspecs must match length of names"
with pytest.raises(ValueError, match=msg):
read_fwf(
StringIO(data),
colspecs=colspecs,
names=names,
widths=widths,
index_col=index_col,
)
@pytest.mark.parametrize(
"colspecs, names, widths, index_col, expected",
[
(
[(0, 6), (6, 12), (12, 18), (18, None)],
list("abc"),
None,
0,
DataFrame(
index=["col1", "ba"],
columns=["a", "b", "c"],
data=[["col2", "col3", "col4"], ["b ba", "2", np.nan]],
),
),
(
[(0, 6), (6, 12), (12, 18), (18, None)],
list("ab"),
None,
[0, 1],
DataFrame(
index=[["col1", "ba"], ["col2", "b ba"]],
columns=["a", "b"],
data=[["col3", "col4"], ["2", np.nan]],
),
),
(
[(0, 6), (6, 12), (12, 18), (18, None)],
list("a"),
None,
[0, 1, 2],
DataFrame(
index=[["col1", "ba"], ["col2", "b ba"], ["col3", "2"]],
columns=["a"],
data=[["col4"], [np.nan]],
),
),
(
None,
list("abc"),
[6] * 4,
0,
DataFrame(
index=["col1", "ba"],
columns=["a", "b", "c"],
data=[["col2", "col3", "col4"], ["b ba", "2", np.nan]],
),
),
(
None,
list("ab"),
[6] * 4,
[0, 1],
DataFrame(
index=[["col1", "ba"], ["col2", "b ba"]],
columns=["a", "b"],
data=[["col3", "col4"], ["2", np.nan]],
),
),
(
None,
list("a"),
[6] * 4,
[0, 1, 2],
DataFrame(
index=[["col1", "ba"], ["col2", "b ba"], ["col3", "2"]],
columns=["a"],
data=[["col4"], [np.nan]],
),
),
],
)
def test_len_colspecs_len_names_with_index_col(
colspecs, names, widths, index_col, expected
):
# GH#40830
data = """col1 col2 col3 col4
bab ba 2"""
result = read_fwf(
StringIO(data),
colspecs=colspecs,
names=names,
widths=widths,
index_col=index_col,
)
tm.assert_frame_equal(result, expected)
def test_colspecs_with_comment():
# GH 14135
result = read_fwf(
StringIO("#\nA1K\n"), colspecs=[(1, 2), (2, 3)], comment="#", header=None
)
expected = DataFrame([[1, "K"]], columns=[0, 1])
tm.assert_frame_equal(result, expected)
def test_skip_rows_and_n_rows():
# GH#44021
data = """a\tb
1\t a
2\t b
3\t c
4\t d
5\t e
6\t f
"""
result = read_fwf(StringIO(data), nrows=4, skiprows=[2, 4])
expected = DataFrame({"a": [1, 3, 5, 6], "b": ["a", "c", "e", "f"]})
tm.assert_frame_equal(result, expected)
def test_skiprows_with_iterator():
# GH#10261, GH#56323
data = """0
1
2
3
4
5
6
7
8
9
"""
df_iter = read_fwf(
StringIO(data),
colspecs=[(0, 2)],
names=["a"],
iterator=True,
chunksize=2,
skiprows=[0, 1, 2, 6, 9],
)
expected_frames = [
DataFrame({"a": [3, 4]}),
DataFrame({"a": [5, 7]}, index=[2, 3]),
DataFrame({"a": [8]}, index=[4]),
]
for i, result in enumerate(df_iter):
tm.assert_frame_equal(result, expected_frames[i])
def test_names_and_infer_colspecs():
# GH#45337
data = """X Y Z
959.0 345 22.2
"""
result = read_fwf(StringIO(data), skiprows=1, usecols=[0, 2], names=["a", "b"])
expected = DataFrame({"a": [959.0], "b": 22.2})
tm.assert_frame_equal(result, expected)
def test_widths_and_usecols():
# GH#46580
data = """0 1 n -0.4100.1
0 2 p 0.2 90.1
0 3 n -0.3140.4"""
result = read_fwf(
StringIO(data),
header=None,
usecols=(0, 1, 3),
widths=(3, 5, 1, 5, 5),
index_col=False,
names=("c0", "c1", "c3"),
)
expected = DataFrame(
{
"c0": 0,
"c1": [1, 2, 3],
"c3": [-0.4, 0.2, -0.3],
}
)
tm.assert_frame_equal(result, expected)
def test_dtype_backend(string_storage, dtype_backend):
# GH#50289
data = """a b c d e f g h i
1 2.5 True a
3 4.5 False b True 6 7.5 a"""
with pd.option_context("mode.string_storage", string_storage):
result = read_fwf(StringIO(data), dtype_backend=dtype_backend)
if dtype_backend == "pyarrow":
pa = td.versioned_importorskip("pyarrow")
string_dtype = pd.ArrowDtype(pa.string())
else:
string_dtype = pd.StringDtype(string_storage)
expected = DataFrame(
{
"a": pd.Series([1, 3], dtype="Int64"),
"b": pd.Series([2.5, 4.5], dtype="Float64"),
"c": pd.Series([True, False], dtype="boolean"),
"d": pd.Series(["a", "b"], dtype=string_dtype),
"e": pd.Series([pd.NA, True], dtype="boolean"),
"f": pd.Series([pd.NA, 6], dtype="Int64"),
"g": pd.Series([pd.NA, 7.5], dtype="Float64"),
"h": pd.Series([None, "a"], dtype=string_dtype),
"i": pd.Series([pd.NA, pd.NA], dtype="Int64"),
}
)
if dtype_backend == "pyarrow":
pa = td.versioned_importorskip("pyarrow")
from pandas.arrays import ArrowExtensionArray
expected = DataFrame(
{
col: ArrowExtensionArray(pa.array(expected[col], from_pandas=True))
for col in expected.columns
}
)
expected["i"] = ArrowExtensionArray(pa.array([None, None]))
# the storage of the str columns' Index is also affected by the
# string_storage setting -> ignore that for checking the result
tm.assert_frame_equal(result, expected, check_column_type=False)
def test_invalid_dtype_backend():
msg = (
"dtype_backend numpy is invalid, only 'numpy_nullable' and "
"'pyarrow' are allowed."
)
with pytest.raises(ValueError, match=msg):
read_fwf("test", dtype_backend="numpy")
@pytest.mark.network
@pytest.mark.single_cpu
def test_url_urlopen(httpserver):
data = """\
A B C D
201158 360.242940 149.910199 11950.7
201159 444.953632 166.985655 11788.4
201160 364.136849 183.628767 11806.2
201161 413.836124 184.375703 11916.8
201162 502.953953 173.237159 12468.3
"""
httpserver.serve_content(content=data)
expected = pd.Index(list("ABCD"))
with urlopen(httpserver.url) as f:
result = read_fwf(f).columns
tm.assert_index_equal(result, expected)
|