File: test_equals.py

package info (click to toggle)
pandas 2.3.2%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 66,808 kB
  • sloc: python: 424,977; ansic: 9,190; sh: 264; xml: 102; makefile: 85
file content (145 lines) | stat: -rw-r--r-- 4,182 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from contextlib import nullcontext
import copy

import numpy as np
import pytest

from pandas._libs.missing import is_matching_na
from pandas.compat.numpy import np_version_gte1p25

from pandas.core.dtypes.common import is_float

from pandas import (
    Index,
    MultiIndex,
    Series,
)
import pandas._testing as tm


@pytest.mark.parametrize(
    "arr, idx",
    [
        ([1, 2, 3, 4], [0, 2, 1, 3]),
        ([1, np.nan, 3, np.nan], [0, 2, 1, 3]),
        (
            [1, np.nan, 3, np.nan],
            MultiIndex.from_tuples([(0, "a"), (1, "b"), (2, "c"), (3, "c")]),
        ),
    ],
)
def test_equals(arr, idx):
    s1 = Series(arr, index=idx)
    s2 = s1.copy()
    assert s1.equals(s2)

    s1[1] = 9
    assert not s1.equals(s2)


@pytest.mark.parametrize(
    "val", [1, 1.1, 1 + 1j, True, "abc", [1, 2], (1, 2), {1, 2}, {"a": 1}, None]
)
def test_equals_list_array(val):
    # GH20676 Verify equals operator for list of Numpy arrays
    arr = np.array([1, 2])
    s1 = Series([arr, arr])
    s2 = s1.copy()
    assert s1.equals(s2)

    s1[1] = val

    cm = (
        tm.assert_produces_warning(FutureWarning, check_stacklevel=False)
        if isinstance(val, str) and not np_version_gte1p25
        else nullcontext()
    )
    with cm:
        assert not s1.equals(s2)


def test_equals_false_negative():
    # GH8437 Verify false negative behavior of equals function for dtype object
    arr = [False, np.nan]
    s1 = Series(arr)
    s2 = s1.copy()
    s3 = Series(index=range(2), dtype=object)
    s4 = s3.copy()
    s5 = s3.copy()
    s6 = s3.copy()

    s3[:-1] = s4[:-1] = s5[0] = s6[0] = False
    assert s1.equals(s1)
    assert s1.equals(s2)
    assert s1.equals(s3)
    assert s1.equals(s4)
    assert s1.equals(s5)
    assert s5.equals(s6)


def test_equals_matching_nas():
    # matching but not identical NAs
    left = Series([np.datetime64("NaT")], dtype=object)
    right = Series([np.datetime64("NaT")], dtype=object)
    assert left.equals(right)
    with tm.assert_produces_warning(FutureWarning, match="Dtype inference"):
        assert Index(left).equals(Index(right))
    assert left.array.equals(right.array)

    left = Series([np.timedelta64("NaT")], dtype=object)
    right = Series([np.timedelta64("NaT")], dtype=object)
    assert left.equals(right)
    with tm.assert_produces_warning(FutureWarning, match="Dtype inference"):
        assert Index(left).equals(Index(right))
    assert left.array.equals(right.array)

    left = Series([np.float64("NaN")], dtype=object)
    right = Series([np.float64("NaN")], dtype=object)
    assert left.equals(right)
    assert Index(left, dtype=left.dtype).equals(Index(right, dtype=right.dtype))
    assert left.array.equals(right.array)


def test_equals_mismatched_nas(nulls_fixture, nulls_fixture2):
    # GH#39650
    left = nulls_fixture
    right = nulls_fixture2
    if hasattr(right, "copy"):
        right = right.copy()
    else:
        right = copy.copy(right)

    ser = Series([left], dtype=object)
    ser2 = Series([right], dtype=object)

    if is_matching_na(left, right):
        assert ser.equals(ser2)
    elif (left is None and is_float(right)) or (right is None and is_float(left)):
        assert ser.equals(ser2)
    else:
        assert not ser.equals(ser2)


def test_equals_none_vs_nan():
    # GH#39650
    ser = Series([1, None], dtype=object)
    ser2 = Series([1, np.nan], dtype=object)

    assert ser.equals(ser2)
    assert Index(ser, dtype=ser.dtype).equals(Index(ser2, dtype=ser2.dtype))
    assert ser.array.equals(ser2.array)


def test_equals_None_vs_float():
    # GH#44190
    left = Series([-np.inf, np.nan, -1.0, 0.0, 1.0, 10 / 3, np.inf], dtype=object)
    right = Series([None] * len(left))

    # these series were found to be equal due to a bug, check that they are correctly
    # found to not equal
    assert not left.equals(right)
    assert not right.equals(left)
    assert not left.to_frame().equals(right.to_frame())
    assert not right.to_frame().equals(left.to_frame())
    assert not Index(left, dtype="object").equals(Index(right, dtype="object"))
    assert not Index(right, dtype="object").equals(Index(left, dtype="object"))