File: fix_random_seeds.patch

package info (click to toggle)
pandas 2.3.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 66,992 kB
  • sloc: python: 425,583; ansic: 9,219; sh: 264; xml: 102; makefile: 85
file content (209 lines) | stat: -rw-r--r-- 6,815 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
Description: Use fixed seeds for reproducible pseudorandomness

Author: Rebecca N. Palmer <rebecca_palmer@zoho.com>
Forwarded: no

--- a/doc/source/getting_started/comparison/comparison_with_r.rst
+++ b/doc/source/getting_started/comparison/comparison_with_r.rst
@@ -237,6 +237,7 @@ In pandas we may use :meth:`~pandas.pivo
 
    import random
    import string
+   random.seed(123456) # for reproducibility
 
    baseball = pd.DataFrame(
        {
--- a/doc/source/user_guide/10min.rst
+++ b/doc/source/user_guide/10min.rst
@@ -701,6 +701,11 @@ We use the standard convention for refer
 The ``plt.close`` method is used to `close <https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.close.html>`__ a figure window:
 
 .. ipython:: python
+   :suppress:
+
+   np.random.seed(123456)  # for reproducibility
+
+.. ipython:: python
 
    ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000))
    ts = ts.cumsum()
@@ -717,6 +722,11 @@ The ``plt.close`` method is used to `clo
 :meth:`~DataFrame.plot` plots all columns:
 
 .. ipython:: python
+   :suppress:
+
+   np.random.seed(123456)  # for reproducibility
+
+.. ipython:: python
 
    df = pd.DataFrame(
        np.random.randn(1000, 4), index=ts.index, columns=["A", "B", "C", "D"]
--- a/doc/source/user_guide/advanced.rst
+++ b/doc/source/user_guide/advanced.rst
@@ -590,6 +590,7 @@ they need to be sorted. As with any inde
 
    import random
 
+   random.seed(123456) # for reproducibility
    random.shuffle(tuples)
    s = pd.Series(np.random.randn(8), index=pd.MultiIndex.from_tuples(tuples))
    s
--- a/doc/source/user_guide/visualization.rst
+++ b/doc/source/user_guide/visualization.rst
@@ -1090,6 +1090,7 @@ are what constitutes the bootstrap plot.
 .. ipython:: python
 
    from pandas.plotting import bootstrap_plot
+   random.seed(123456) # for reproducibility - bootstrap_plot uses random.sample
 
    data = pd.Series(np.random.rand(1000))
 
--- a/pandas/plotting/_core.py
+++ b/pandas/plotting/_core.py
@@ -604,6 +604,7 @@ def boxplot_frame_groupby(
     .. plot::
         :context: close-figs
 
+        >>> np.random.seed(1234)
         >>> import itertools
         >>> tuples = [t for t in itertools.product(range(1000), range(4))]
         >>> index = pd.MultiIndex.from_tuples(tuples, names=['lvl0', 'lvl1'])
@@ -1328,6 +1329,7 @@ class PlotAccessor(PandasObject):
         .. plot::
             :context: close-figs
 
+            >>> np.random.seed(1234)
             >>> data = np.random.randn(25, 4)
             >>> df = pd.DataFrame(data, columns=list('ABCD'))
             >>> ax = df.plot.box()
@@ -1392,6 +1394,7 @@ class PlotAccessor(PandasObject):
         .. plot::
             :context: close-figs
 
+            >>> np.random.seed(1234)
             >>> df = pd.DataFrame(np.random.randint(1, 7, 6000), columns=['one'])
             >>> df['two'] = df['one'] + np.random.randint(1, 7, 6000)
             >>> ax = df.plot.hist(bins=12, alpha=0.5)
@@ -1811,6 +1814,7 @@ class PlotAccessor(PandasObject):
         .. plot::
             :context: close-figs
 
+            >>> np.random.seed(1234)
             >>> n = 10000
             >>> df = pd.DataFrame({'x': np.random.randn(n),
             ...                    'y': np.random.randn(n)})
--- a/pandas/plotting/_misc.py
+++ b/pandas/plotting/_misc.py
@@ -204,6 +204,7 @@ def scatter_matrix(
     .. plot::
         :context: close-figs
 
+        >>> np.random.seed(1234)
         >>> df = pd.DataFrame(np.random.randn(1000, 4), columns=['A','B','C','D'])
         >>> pd.plotting.scatter_matrix(df, alpha=0.2)
         array([[<Axes: xlabel='A', ylabel='A'>, <Axes: xlabel='B', ylabel='A'>,
@@ -438,6 +439,8 @@ def bootstrap_plot(
     .. plot::
         :context: close-figs
 
+        >>> np.random.seed(1234)
+        >>> random.seed(1234)  # for reproducibility
         >>> s = pd.Series(np.random.uniform(size=100))
         >>> pd.plotting.bootstrap_plot(s)  # doctest: +SKIP
         <Figure size 640x480 with 6 Axes>
@@ -597,6 +600,7 @@ def autocorrelation_plot(series: Series,
     .. plot::
         :context: close-figs
 
+        >>> np.random.seed(1234)
         >>> spacing = np.linspace(-9 * np.pi, 9 * np.pi, num=1000)
         >>> s = pd.Series(0.7 * np.random.rand(1000) + 0.3 * np.sin(spacing))
         >>> pd.plotting.autocorrelation_plot(s)  # doctest: +SKIP
--- a/doc/source/user_guide/style.ipynb
+++ b/doc/source/user_guide/style.ipynb
@@ -78,8 +78,37 @@
    "source": [
     "import pandas as pd\n",
     "import numpy as np\n",
-    "import matplotlib as mpl\n",
-    "\n",
+    "import matplotlib as mpl\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "nbsphinx": "hidden"
+   },
+   "outputs": [],
+   "source": [
+    "# For reproducibility - this doesn't respect uuid_len or positionally-passed uuid but the places here that use that coincidentally bypass this anyway\n",
+    "from pandas.io.formats.style import Styler\n",
+    "next_uuid = 1000\n",
+    "class StylerReproducible(Styler):\n",
+    "    def __init__(self, *args, uuid=None, **kwargs):\n",
+    "        global next_uuid\n",
+    "        if uuid is None:\n",
+    "            uuid = str(next_uuid)\n",
+    "            next_uuid = next_uuid + 1\n",
+    "        super().__init__(*args, uuid=uuid, **kwargs)\n",
+    "Styler = StylerReproducible\n",
+    "pd.DataFrame.style = property(lambda self: StylerReproducible(self))\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
     "df = pd.DataFrame({\n",
     "    \"strings\": [\"Adam\", \"Mike\"],\n",
     "    \"ints\": [1, 3],\n",
@@ -104,6 +133,7 @@
    "metadata": {},
    "outputs": [],
    "source": [
+    "np.random.seed(25)  # for reproducibility\n",
     "weather_df = pd.DataFrame(np.random.rand(10,2)*5, \n",
     "                          index=pd.date_range(start=\"2021-01-01\", periods=10),\n",
     "                          columns=[\"Tokyo\", \"Beijing\"])\n",
@@ -1394,7 +1424,6 @@
    "outputs": [],
    "source": [
     "# Hide the construction of the display chart from the user\n",
-    "import pandas as pd\n",
     "from IPython.display import HTML\n",
     "\n",
     "# Test series\n",
@@ -1926,6 +1955,18 @@
    ]
   },
   {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "nbsphinx": "hidden"
+   },
+   "outputs": [],
+   "source": [
+    "# For reproducibility\n",
+    "Styler = StylerReproducible\n"
+   ]
+  },
+  {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
@@ -2126,7 +2167,8 @@
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
    "version": "3.9.5"
-  }
+  },
+  "record_timing": false
  },
  "nbformat": 4,
  "nbformat_minor": 1