1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
|
from __future__ import annotations
import importlib
from typing import (
TYPE_CHECKING,
Callable,
Literal,
)
from pandas._config import get_option
from pandas.util._decorators import (
Appender,
Substitution,
)
from pandas.core.dtypes.common import (
is_integer,
is_list_like,
)
from pandas.core.dtypes.generic import (
ABCDataFrame,
ABCSeries,
)
from pandas.core.base import PandasObject
if TYPE_CHECKING:
from collections.abc import (
Hashable,
Sequence,
)
import types
from matplotlib.axes import Axes
import numpy as np
from pandas._typing import IndexLabel
from pandas import (
DataFrame,
Series,
)
from pandas.core.groupby.generic import DataFrameGroupBy
def hist_series(
self: Series,
by=None,
ax=None,
grid: bool = True,
xlabelsize: int | None = None,
xrot: float | None = None,
ylabelsize: int | None = None,
yrot: float | None = None,
figsize: tuple[int, int] | None = None,
bins: int | Sequence[int] = 10,
backend: str | None = None,
legend: bool = False,
**kwargs,
):
"""
Draw histogram of the input series using matplotlib.
Parameters
----------
by : object, optional
If passed, then used to form histograms for separate groups.
ax : matplotlib axis object
If not passed, uses gca().
grid : bool, default True
Whether to show axis grid lines.
xlabelsize : int, default None
If specified changes the x-axis label size.
xrot : float, default None
Rotation of x axis labels.
ylabelsize : int, default None
If specified changes the y-axis label size.
yrot : float, default None
Rotation of y axis labels.
figsize : tuple, default None
Figure size in inches by default.
bins : int or sequence, default 10
Number of histogram bins to be used. If an integer is given, bins + 1
bin edges are calculated and returned. If bins is a sequence, gives
bin edges, including left edge of first bin and right edge of last
bin. In this case, bins is returned unmodified.
backend : str, default None
Backend to use instead of the backend specified in the option
``plotting.backend``. For instance, 'matplotlib'. Alternatively, to
specify the ``plotting.backend`` for the whole session, set
``pd.options.plotting.backend``.
legend : bool, default False
Whether to show the legend.
**kwargs
To be passed to the actual plotting function.
Returns
-------
matplotlib.AxesSubplot
A histogram plot.
See Also
--------
matplotlib.axes.Axes.hist : Plot a histogram using matplotlib.
Examples
--------
For Series:
.. plot::
:context: close-figs
>>> lst = ['a', 'a', 'a', 'b', 'b', 'b']
>>> ser = pd.Series([1, 2, 2, 4, 6, 6], index=lst)
>>> hist = ser.hist()
For Groupby:
.. plot::
:context: close-figs
>>> lst = ['a', 'a', 'a', 'b', 'b', 'b']
>>> ser = pd.Series([1, 2, 2, 4, 6, 6], index=lst)
>>> hist = ser.groupby(level=0).hist()
"""
plot_backend = _get_plot_backend(backend)
return plot_backend.hist_series(
self,
by=by,
ax=ax,
grid=grid,
xlabelsize=xlabelsize,
xrot=xrot,
ylabelsize=ylabelsize,
yrot=yrot,
figsize=figsize,
bins=bins,
legend=legend,
**kwargs,
)
def hist_frame(
data: DataFrame,
column: IndexLabel | None = None,
by=None,
grid: bool = True,
xlabelsize: int | None = None,
xrot: float | None = None,
ylabelsize: int | None = None,
yrot: float | None = None,
ax=None,
sharex: bool = False,
sharey: bool = False,
figsize: tuple[int, int] | None = None,
layout: tuple[int, int] | None = None,
bins: int | Sequence[int] = 10,
backend: str | None = None,
legend: bool = False,
**kwargs,
):
"""
Make a histogram of the DataFrame's columns.
A `histogram`_ is a representation of the distribution of data.
This function calls :meth:`matplotlib.pyplot.hist`, on each series in
the DataFrame, resulting in one histogram per column.
.. _histogram: https://en.wikipedia.org/wiki/Histogram
Parameters
----------
data : DataFrame
The pandas object holding the data.
column : str or sequence, optional
If passed, will be used to limit data to a subset of columns.
by : object, optional
If passed, then used to form histograms for separate groups.
grid : bool, default True
Whether to show axis grid lines.
xlabelsize : int, default None
If specified changes the x-axis label size.
xrot : float, default None
Rotation of x axis labels. For example, a value of 90 displays the
x labels rotated 90 degrees clockwise.
ylabelsize : int, default None
If specified changes the y-axis label size.
yrot : float, default None
Rotation of y axis labels. For example, a value of 90 displays the
y labels rotated 90 degrees clockwise.
ax : Matplotlib axes object, default None
The axes to plot the histogram on.
sharex : bool, default True if ax is None else False
In case subplots=True, share x axis and set some x axis labels to
invisible; defaults to True if ax is None otherwise False if an ax
is passed in.
Note that passing in both an ax and sharex=True will alter all x axis
labels for all subplots in a figure.
sharey : bool, default False
In case subplots=True, share y axis and set some y axis labels to
invisible.
figsize : tuple, optional
The size in inches of the figure to create. Uses the value in
`matplotlib.rcParams` by default.
layout : tuple, optional
Tuple of (rows, columns) for the layout of the histograms.
bins : int or sequence, default 10
Number of histogram bins to be used. If an integer is given, bins + 1
bin edges are calculated and returned. If bins is a sequence, gives
bin edges, including left edge of first bin and right edge of last
bin. In this case, bins is returned unmodified.
backend : str, default None
Backend to use instead of the backend specified in the option
``plotting.backend``. For instance, 'matplotlib'. Alternatively, to
specify the ``plotting.backend`` for the whole session, set
``pd.options.plotting.backend``.
legend : bool, default False
Whether to show the legend.
**kwargs
All other plotting keyword arguments to be passed to
:meth:`matplotlib.pyplot.hist`.
Returns
-------
matplotlib.AxesSubplot or numpy.ndarray of them
See Also
--------
matplotlib.pyplot.hist : Plot a histogram using matplotlib.
Examples
--------
This example draws a histogram based on the length and width of
some animals, displayed in three bins
.. plot::
:context: close-figs
>>> data = {'length': [1.5, 0.5, 1.2, 0.9, 3],
... 'width': [0.7, 0.2, 0.15, 0.2, 1.1]}
>>> index = ['pig', 'rabbit', 'duck', 'chicken', 'horse']
>>> df = pd.DataFrame(data, index=index)
>>> hist = df.hist(bins=3)
"""
plot_backend = _get_plot_backend(backend)
return plot_backend.hist_frame(
data,
column=column,
by=by,
grid=grid,
xlabelsize=xlabelsize,
xrot=xrot,
ylabelsize=ylabelsize,
yrot=yrot,
ax=ax,
sharex=sharex,
sharey=sharey,
figsize=figsize,
layout=layout,
legend=legend,
bins=bins,
**kwargs,
)
_boxplot_doc = """
Make a box plot from DataFrame columns.
Make a box-and-whisker plot from DataFrame columns, optionally grouped
by some other columns. A box plot is a method for graphically depicting
groups of numerical data through their quartiles.
The box extends from the Q1 to Q3 quartile values of the data,
with a line at the median (Q2). The whiskers extend from the edges
of box to show the range of the data. By default, they extend no more than
`1.5 * IQR (IQR = Q3 - Q1)` from the edges of the box, ending at the farthest
data point within that interval. Outliers are plotted as separate dots.
For further details see
Wikipedia's entry for `boxplot <https://en.wikipedia.org/wiki/Box_plot>`_.
Parameters
----------
%(data)s\
column : str or list of str, optional
Column name or list of names, or vector.
Can be any valid input to :meth:`pandas.DataFrame.groupby`.
by : str or array-like, optional
Column in the DataFrame to :meth:`pandas.DataFrame.groupby`.
One box-plot will be done per value of columns in `by`.
ax : object of class matplotlib.axes.Axes, optional
The matplotlib axes to be used by boxplot.
fontsize : float or str
Tick label font size in points or as a string (e.g., `large`).
rot : float, default 0
The rotation angle of labels (in degrees)
with respect to the screen coordinate system.
grid : bool, default True
Setting this to True will show the grid.
figsize : A tuple (width, height) in inches
The size of the figure to create in matplotlib.
layout : tuple (rows, columns), optional
For example, (3, 5) will display the subplots
using 3 rows and 5 columns, starting from the top-left.
return_type : {'axes', 'dict', 'both'} or None, default 'axes'
The kind of object to return. The default is ``axes``.
* 'axes' returns the matplotlib axes the boxplot is drawn on.
* 'dict' returns a dictionary whose values are the matplotlib
Lines of the boxplot.
* 'both' returns a namedtuple with the axes and dict.
* when grouping with ``by``, a Series mapping columns to
``return_type`` is returned.
If ``return_type`` is `None`, a NumPy array
of axes with the same shape as ``layout`` is returned.
%(backend)s\
**kwargs
All other plotting keyword arguments to be passed to
:func:`matplotlib.pyplot.boxplot`.
Returns
-------
result
See Notes.
See Also
--------
pandas.Series.plot.hist: Make a histogram.
matplotlib.pyplot.boxplot : Matplotlib equivalent plot.
Notes
-----
The return type depends on the `return_type` parameter:
* 'axes' : object of class matplotlib.axes.Axes
* 'dict' : dict of matplotlib.lines.Line2D objects
* 'both' : a namedtuple with structure (ax, lines)
For data grouped with ``by``, return a Series of the above or a numpy
array:
* :class:`~pandas.Series`
* :class:`~numpy.array` (for ``return_type = None``)
Use ``return_type='dict'`` when you want to tweak the appearance
of the lines after plotting. In this case a dict containing the Lines
making up the boxes, caps, fliers, medians, and whiskers is returned.
Examples
--------
Boxplots can be created for every column in the dataframe
by ``df.boxplot()`` or indicating the columns to be used:
.. plot::
:context: close-figs
>>> np.random.seed(1234)
>>> df = pd.DataFrame(np.random.randn(10, 4),
... columns=['Col1', 'Col2', 'Col3', 'Col4'])
>>> boxplot = df.boxplot(column=['Col1', 'Col2', 'Col3']) # doctest: +SKIP
Boxplots of variables distributions grouped by the values of a third
variable can be created using the option ``by``. For instance:
.. plot::
:context: close-figs
>>> df = pd.DataFrame(np.random.randn(10, 2),
... columns=['Col1', 'Col2'])
>>> df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A',
... 'B', 'B', 'B', 'B', 'B'])
>>> boxplot = df.boxplot(by='X')
A list of strings (i.e. ``['X', 'Y']``) can be passed to boxplot
in order to group the data by combination of the variables in the x-axis:
.. plot::
:context: close-figs
>>> df = pd.DataFrame(np.random.randn(10, 3),
... columns=['Col1', 'Col2', 'Col3'])
>>> df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A',
... 'B', 'B', 'B', 'B', 'B'])
>>> df['Y'] = pd.Series(['A', 'B', 'A', 'B', 'A',
... 'B', 'A', 'B', 'A', 'B'])
>>> boxplot = df.boxplot(column=['Col1', 'Col2'], by=['X', 'Y'])
The layout of boxplot can be adjusted giving a tuple to ``layout``:
.. plot::
:context: close-figs
>>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
... layout=(2, 1))
Additional formatting can be done to the boxplot, like suppressing the grid
(``grid=False``), rotating the labels in the x-axis (i.e. ``rot=45``)
or changing the fontsize (i.e. ``fontsize=15``):
.. plot::
:context: close-figs
>>> boxplot = df.boxplot(grid=False, rot=45, fontsize=15) # doctest: +SKIP
The parameter ``return_type`` can be used to select the type of element
returned by `boxplot`. When ``return_type='axes'`` is selected,
the matplotlib axes on which the boxplot is drawn are returned:
>>> boxplot = df.boxplot(column=['Col1', 'Col2'], return_type='axes')
>>> type(boxplot)
<class 'matplotlib.axes._axes.Axes'>
When grouping with ``by``, a Series mapping columns to ``return_type``
is returned:
>>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
... return_type='axes')
>>> type(boxplot)
<class 'pandas.core.series.Series'>
If ``return_type`` is `None`, a NumPy array of axes with the same shape
as ``layout`` is returned:
>>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X',
... return_type=None)
>>> type(boxplot)
<class 'numpy.ndarray'>
"""
_backend_doc = """\
backend : str, default None
Backend to use instead of the backend specified in the option
``plotting.backend``. For instance, 'matplotlib'. Alternatively, to
specify the ``plotting.backend`` for the whole session, set
``pd.options.plotting.backend``.
"""
_bar_or_line_doc = """
Parameters
----------
x : label or position, optional
Allows plotting of one column versus another. If not specified,
the index of the DataFrame is used.
y : label or position, optional
Allows plotting of one column versus another. If not specified,
all numerical columns are used.
color : str, array-like, or dict, optional
The color for each of the DataFrame's columns. Possible values are:
- A single color string referred to by name, RGB or RGBA code,
for instance 'red' or '#a98d19'.
- A sequence of color strings referred to by name, RGB or RGBA
code, which will be used for each column recursively. For
instance ['green','yellow'] each column's %(kind)s will be filled in
green or yellow, alternatively. If there is only a single column to
be plotted, then only the first color from the color list will be
used.
- A dict of the form {column name : color}, so that each column will be
colored accordingly. For example, if your columns are called `a` and
`b`, then passing {'a': 'green', 'b': 'red'} will color %(kind)ss for
column `a` in green and %(kind)ss for column `b` in red.
**kwargs
Additional keyword arguments are documented in
:meth:`DataFrame.plot`.
Returns
-------
matplotlib.axes.Axes or np.ndarray of them
An ndarray is returned with one :class:`matplotlib.axes.Axes`
per column when ``subplots=True``.
"""
@Substitution(data="data : DataFrame\n The data to visualize.\n", backend="")
@Appender(_boxplot_doc)
def boxplot(
data: DataFrame,
column: str | list[str] | None = None,
by: str | list[str] | None = None,
ax: Axes | None = None,
fontsize: float | str | None = None,
rot: int = 0,
grid: bool = True,
figsize: tuple[float, float] | None = None,
layout: tuple[int, int] | None = None,
return_type: str | None = None,
**kwargs,
):
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.boxplot(
data,
column=column,
by=by,
ax=ax,
fontsize=fontsize,
rot=rot,
grid=grid,
figsize=figsize,
layout=layout,
return_type=return_type,
**kwargs,
)
@Substitution(data="", backend=_backend_doc)
@Appender(_boxplot_doc)
def boxplot_frame(
self: DataFrame,
column=None,
by=None,
ax=None,
fontsize: int | None = None,
rot: int = 0,
grid: bool = True,
figsize: tuple[float, float] | None = None,
layout=None,
return_type=None,
backend=None,
**kwargs,
):
plot_backend = _get_plot_backend(backend)
return plot_backend.boxplot_frame(
self,
column=column,
by=by,
ax=ax,
fontsize=fontsize,
rot=rot,
grid=grid,
figsize=figsize,
layout=layout,
return_type=return_type,
**kwargs,
)
def boxplot_frame_groupby(
grouped: DataFrameGroupBy,
subplots: bool = True,
column=None,
fontsize: int | None = None,
rot: int = 0,
grid: bool = True,
ax=None,
figsize: tuple[float, float] | None = None,
layout=None,
sharex: bool = False,
sharey: bool = True,
backend=None,
**kwargs,
):
"""
Make box plots from DataFrameGroupBy data.
Parameters
----------
grouped : Grouped DataFrame
subplots : bool
* ``False`` - no subplots will be used
* ``True`` - create a subplot for each group.
column : column name or list of names, or vector
Can be any valid input to groupby.
fontsize : float or str
rot : label rotation angle
grid : Setting this to True will show the grid
ax : Matplotlib axis object, default None
figsize : A tuple (width, height) in inches
layout : tuple (optional)
The layout of the plot: (rows, columns).
sharex : bool, default False
Whether x-axes will be shared among subplots.
sharey : bool, default True
Whether y-axes will be shared among subplots.
backend : str, default None
Backend to use instead of the backend specified in the option
``plotting.backend``. For instance, 'matplotlib'. Alternatively, to
specify the ``plotting.backend`` for the whole session, set
``pd.options.plotting.backend``.
**kwargs
All other plotting keyword arguments to be passed to
matplotlib's boxplot function.
Returns
-------
dict of key/value = group key/DataFrame.boxplot return value
or DataFrame.boxplot return value in case subplots=figures=False
Examples
--------
You can create boxplots for grouped data and show them as separate subplots:
.. plot::
:context: close-figs
>>> np.random.seed(1234)
>>> import itertools
>>> tuples = [t for t in itertools.product(range(1000), range(4))]
>>> index = pd.MultiIndex.from_tuples(tuples, names=['lvl0', 'lvl1'])
>>> data = np.random.randn(len(index), 4)
>>> df = pd.DataFrame(data, columns=list('ABCD'), index=index)
>>> grouped = df.groupby(level='lvl1')
>>> grouped.boxplot(rot=45, fontsize=12, figsize=(8, 10)) # doctest: +SKIP
The ``subplots=False`` option shows the boxplots in a single figure.
.. plot::
:context: close-figs
>>> grouped.boxplot(subplots=False, rot=45, fontsize=12) # doctest: +SKIP
"""
plot_backend = _get_plot_backend(backend)
return plot_backend.boxplot_frame_groupby(
grouped,
subplots=subplots,
column=column,
fontsize=fontsize,
rot=rot,
grid=grid,
ax=ax,
figsize=figsize,
layout=layout,
sharex=sharex,
sharey=sharey,
**kwargs,
)
class PlotAccessor(PandasObject):
"""
Make plots of Series or DataFrame.
Uses the backend specified by the
option ``plotting.backend``. By default, matplotlib is used.
Parameters
----------
data : Series or DataFrame
The object for which the method is called.
x : label or position, default None
Only used if data is a DataFrame.
y : label, position or list of label, positions, default None
Allows plotting of one column versus another. Only used if data is a
DataFrame.
kind : str
The kind of plot to produce:
- 'line' : line plot (default)
- 'bar' : vertical bar plot
- 'barh' : horizontal bar plot
- 'hist' : histogram
- 'box' : boxplot
- 'kde' : Kernel Density Estimation plot
- 'density' : same as 'kde'
- 'area' : area plot
- 'pie' : pie plot
- 'scatter' : scatter plot (DataFrame only)
- 'hexbin' : hexbin plot (DataFrame only)
ax : matplotlib axes object, default None
An axes of the current figure.
subplots : bool or sequence of iterables, default False
Whether to group columns into subplots:
- ``False`` : No subplots will be used
- ``True`` : Make separate subplots for each column.
- sequence of iterables of column labels: Create a subplot for each
group of columns. For example `[('a', 'c'), ('b', 'd')]` will
create 2 subplots: one with columns 'a' and 'c', and one
with columns 'b' and 'd'. Remaining columns that aren't specified
will be plotted in additional subplots (one per column).
.. versionadded:: 1.5.0
sharex : bool, default True if ax is None else False
In case ``subplots=True``, share x axis and set some x axis labels
to invisible; defaults to True if ax is None otherwise False if
an ax is passed in; Be aware, that passing in both an ax and
``sharex=True`` will alter all x axis labels for all axis in a figure.
sharey : bool, default False
In case ``subplots=True``, share y axis and set some y axis labels to invisible.
layout : tuple, optional
(rows, columns) for the layout of subplots.
figsize : a tuple (width, height) in inches
Size of a figure object.
use_index : bool, default True
Use index as ticks for x axis.
title : str or list
Title to use for the plot. If a string is passed, print the string
at the top of the figure. If a list is passed and `subplots` is
True, print each item in the list above the corresponding subplot.
grid : bool, default None (matlab style default)
Axis grid lines.
legend : bool or {'reverse'}
Place legend on axis subplots.
style : list or dict
The matplotlib line style per column.
logx : bool or 'sym', default False
Use log scaling or symlog scaling on x axis.
logy : bool or 'sym' default False
Use log scaling or symlog scaling on y axis.
loglog : bool or 'sym', default False
Use log scaling or symlog scaling on both x and y axes.
xticks : sequence
Values to use for the xticks.
yticks : sequence
Values to use for the yticks.
xlim : 2-tuple/list
Set the x limits of the current axes.
ylim : 2-tuple/list
Set the y limits of the current axes.
xlabel : label, optional
Name to use for the xlabel on x-axis. Default uses index name as xlabel, or the
x-column name for planar plots.
.. versionchanged:: 2.0.0
Now applicable to histograms.
ylabel : label, optional
Name to use for the ylabel on y-axis. Default will show no ylabel, or the
y-column name for planar plots.
.. versionchanged:: 2.0.0
Now applicable to histograms.
rot : float, default None
Rotation for ticks (xticks for vertical, yticks for horizontal
plots).
fontsize : float, default None
Font size for xticks and yticks.
colormap : str or matplotlib colormap object, default None
Colormap to select colors from. If string, load colormap with that
name from matplotlib.
colorbar : bool, optional
If True, plot colorbar (only relevant for 'scatter' and 'hexbin'
plots).
position : float
Specify relative alignments for bar plot layout.
From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5
(center).
table : bool, Series or DataFrame, default False
If True, draw a table using the data in the DataFrame and the data
will be transposed to meet matplotlib's default layout.
If a Series or DataFrame is passed, use passed data to draw a
table.
yerr : DataFrame, Series, array-like, dict and str
See :ref:`Plotting with Error Bars <visualization.errorbars>` for
detail.
xerr : DataFrame, Series, array-like, dict and str
Equivalent to yerr.
stacked : bool, default False in line and bar plots, and True in area plot
If True, create stacked plot.
secondary_y : bool or sequence, default False
Whether to plot on the secondary y-axis if a list/tuple, which
columns to plot on secondary y-axis.
mark_right : bool, default True
When using a secondary_y axis, automatically mark the column
labels with "(right)" in the legend.
include_bool : bool, default is False
If True, boolean values can be plotted.
backend : str, default None
Backend to use instead of the backend specified in the option
``plotting.backend``. For instance, 'matplotlib'. Alternatively, to
specify the ``plotting.backend`` for the whole session, set
``pd.options.plotting.backend``.
**kwargs
Options to pass to matplotlib plotting method.
Returns
-------
:class:`matplotlib.axes.Axes` or numpy.ndarray of them
If the backend is not the default matplotlib one, the return value
will be the object returned by the backend.
Notes
-----
- See matplotlib documentation online for more on this subject
- If `kind` = 'bar' or 'barh', you can specify relative alignments
for bar plot layout by `position` keyword.
From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5
(center)
Examples
--------
For Series:
.. plot::
:context: close-figs
>>> ser = pd.Series([1, 2, 3, 3])
>>> plot = ser.plot(kind='hist', title="My plot")
For DataFrame:
.. plot::
:context: close-figs
>>> df = pd.DataFrame({'length': [1.5, 0.5, 1.2, 0.9, 3],
... 'width': [0.7, 0.2, 0.15, 0.2, 1.1]},
... index=['pig', 'rabbit', 'duck', 'chicken', 'horse'])
>>> plot = df.plot(title="DataFrame Plot")
For SeriesGroupBy:
.. plot::
:context: close-figs
>>> lst = [-1, -2, -3, 1, 2, 3]
>>> ser = pd.Series([1, 2, 2, 4, 6, 6], index=lst)
>>> plot = ser.groupby(lambda x: x > 0).plot(title="SeriesGroupBy Plot")
For DataFrameGroupBy:
.. plot::
:context: close-figs
>>> df = pd.DataFrame({"col1" : [1, 2, 3, 4],
... "col2" : ["A", "B", "A", "B"]})
>>> plot = df.groupby("col2").plot(kind="bar", title="DataFrameGroupBy Plot")
"""
_common_kinds = ("line", "bar", "barh", "kde", "density", "area", "hist", "box")
_series_kinds = ("pie",)
_dataframe_kinds = ("scatter", "hexbin")
_kind_aliases = {"density": "kde"}
_all_kinds = _common_kinds + _series_kinds + _dataframe_kinds
def __init__(self, data: Series | DataFrame) -> None:
self._parent = data
@staticmethod
def _get_call_args(backend_name: str, data: Series | DataFrame, args, kwargs):
"""
This function makes calls to this accessor `__call__` method compatible
with the previous `SeriesPlotMethods.__call__` and
`DataFramePlotMethods.__call__`. Those had slightly different
signatures, since `DataFramePlotMethods` accepted `x` and `y`
parameters.
"""
if isinstance(data, ABCSeries):
arg_def = [
("kind", "line"),
("ax", None),
("figsize", None),
("use_index", True),
("title", None),
("grid", None),
("legend", False),
("style", None),
("logx", False),
("logy", False),
("loglog", False),
("xticks", None),
("yticks", None),
("xlim", None),
("ylim", None),
("rot", None),
("fontsize", None),
("colormap", None),
("table", False),
("yerr", None),
("xerr", None),
("label", None),
("secondary_y", False),
("xlabel", None),
("ylabel", None),
]
elif isinstance(data, ABCDataFrame):
arg_def = [
("x", None),
("y", None),
("kind", "line"),
("ax", None),
("subplots", False),
("sharex", None),
("sharey", False),
("layout", None),
("figsize", None),
("use_index", True),
("title", None),
("grid", None),
("legend", True),
("style", None),
("logx", False),
("logy", False),
("loglog", False),
("xticks", None),
("yticks", None),
("xlim", None),
("ylim", None),
("rot", None),
("fontsize", None),
("colormap", None),
("table", False),
("yerr", None),
("xerr", None),
("secondary_y", False),
("xlabel", None),
("ylabel", None),
]
else:
raise TypeError(
f"Called plot accessor for type {type(data).__name__}, "
"expected Series or DataFrame"
)
if args and isinstance(data, ABCSeries):
positional_args = str(args)[1:-1]
keyword_args = ", ".join(
[f"{name}={repr(value)}" for (name, _), value in zip(arg_def, args)]
)
msg = (
"`Series.plot()` should not be called with positional "
"arguments, only keyword arguments. The order of "
"positional arguments will change in the future. "
f"Use `Series.plot({keyword_args})` instead of "
f"`Series.plot({positional_args})`."
)
raise TypeError(msg)
pos_args = {name: value for (name, _), value in zip(arg_def, args)}
if backend_name == "pandas.plotting._matplotlib":
kwargs = dict(arg_def, **pos_args, **kwargs)
else:
kwargs = dict(pos_args, **kwargs)
x = kwargs.pop("x", None)
y = kwargs.pop("y", None)
kind = kwargs.pop("kind", "line")
return x, y, kind, kwargs
def __call__(self, *args, **kwargs):
plot_backend = _get_plot_backend(kwargs.pop("backend", None))
x, y, kind, kwargs = self._get_call_args(
plot_backend.__name__, self._parent, args, kwargs
)
kind = self._kind_aliases.get(kind, kind)
# when using another backend, get out of the way
if plot_backend.__name__ != "pandas.plotting._matplotlib":
return plot_backend.plot(self._parent, x=x, y=y, kind=kind, **kwargs)
if kind not in self._all_kinds:
raise ValueError(
f"{kind} is not a valid plot kind "
f"Valid plot kinds: {self._all_kinds}"
)
# The original data structured can be transformed before passed to the
# backend. For example, for DataFrame is common to set the index as the
# `x` parameter, and return a Series with the parameter `y` as values.
data = self._parent.copy()
if isinstance(data, ABCSeries):
kwargs["reuse_plot"] = True
if kind in self._dataframe_kinds:
if isinstance(data, ABCDataFrame):
return plot_backend.plot(data, x=x, y=y, kind=kind, **kwargs)
else:
raise ValueError(f"plot kind {kind} can only be used for data frames")
elif kind in self._series_kinds:
if isinstance(data, ABCDataFrame):
if y is None and kwargs.get("subplots") is False:
raise ValueError(
f"{kind} requires either y column or 'subplots=True'"
)
if y is not None:
if is_integer(y) and not data.columns._holds_integer():
y = data.columns[y]
# converted to series actually. copy to not modify
data = data[y].copy()
data.index.name = y
elif isinstance(data, ABCDataFrame):
data_cols = data.columns
if x is not None:
if is_integer(x) and not data.columns._holds_integer():
x = data_cols[x]
elif not isinstance(data[x], ABCSeries):
raise ValueError("x must be a label or position")
data = data.set_index(x)
if y is not None:
# check if we have y as int or list of ints
int_ylist = is_list_like(y) and all(is_integer(c) for c in y)
int_y_arg = is_integer(y) or int_ylist
if int_y_arg and not data.columns._holds_integer():
y = data_cols[y]
label_kw = kwargs["label"] if "label" in kwargs else False
for kw in ["xerr", "yerr"]:
if kw in kwargs and (
isinstance(kwargs[kw], str) or is_integer(kwargs[kw])
):
try:
kwargs[kw] = data[kwargs[kw]]
except (IndexError, KeyError, TypeError):
pass
# don't overwrite
data = data[y].copy()
if isinstance(data, ABCSeries):
label_name = label_kw or y
data.name = label_name
else:
match = is_list_like(label_kw) and len(label_kw) == len(y)
if label_kw and not match:
raise ValueError(
"label should be list-like and same length as y"
)
label_name = label_kw or data.columns
data.columns = label_name
return plot_backend.plot(data, kind=kind, **kwargs)
__call__.__doc__ = __doc__
@Appender(
"""
See Also
--------
matplotlib.pyplot.plot : Plot y versus x as lines and/or markers.
Examples
--------
.. plot::
:context: close-figs
>>> s = pd.Series([1, 3, 2])
>>> s.plot.line() # doctest: +SKIP
.. plot::
:context: close-figs
The following example shows the populations for some animals
over the years.
>>> df = pd.DataFrame({
... 'pig': [20, 18, 489, 675, 1776],
... 'horse': [4, 25, 281, 600, 1900]
... }, index=[1990, 1997, 2003, 2009, 2014])
>>> lines = df.plot.line()
.. plot::
:context: close-figs
An example with subplots, so an array of axes is returned.
>>> axes = df.plot.line(subplots=True)
>>> type(axes)
<class 'numpy.ndarray'>
.. plot::
:context: close-figs
Let's repeat the same example, but specifying colors for
each column (in this case, for each animal).
>>> axes = df.plot.line(
... subplots=True, color={"pig": "pink", "horse": "#742802"}
... )
.. plot::
:context: close-figs
The following example shows the relationship between both
populations.
>>> lines = df.plot.line(x='pig', y='horse')
"""
)
@Substitution(kind="line")
@Appender(_bar_or_line_doc)
def line(
self, x: Hashable | None = None, y: Hashable | None = None, **kwargs
) -> PlotAccessor:
"""
Plot Series or DataFrame as lines.
This function is useful to plot lines using DataFrame's values
as coordinates.
"""
return self(kind="line", x=x, y=y, **kwargs)
@Appender(
"""
See Also
--------
DataFrame.plot.barh : Horizontal bar plot.
DataFrame.plot : Make plots of a DataFrame.
matplotlib.pyplot.bar : Make a bar plot with matplotlib.
Examples
--------
Basic plot.
.. plot::
:context: close-figs
>>> df = pd.DataFrame({'lab':['A', 'B', 'C'], 'val':[10, 30, 20]})
>>> ax = df.plot.bar(x='lab', y='val', rot=0)
Plot a whole dataframe to a bar plot. Each column is assigned a
distinct color, and each row is nested in a group along the
horizontal axis.
.. plot::
:context: close-figs
>>> speed = [0.1, 17.5, 40, 48, 52, 69, 88]
>>> lifespan = [2, 8, 70, 1.5, 25, 12, 28]
>>> index = ['snail', 'pig', 'elephant',
... 'rabbit', 'giraffe', 'coyote', 'horse']
>>> df = pd.DataFrame({'speed': speed,
... 'lifespan': lifespan}, index=index)
>>> ax = df.plot.bar(rot=0)
Plot stacked bar charts for the DataFrame
.. plot::
:context: close-figs
>>> ax = df.plot.bar(stacked=True)
Instead of nesting, the figure can be split by column with
``subplots=True``. In this case, a :class:`numpy.ndarray` of
:class:`matplotlib.axes.Axes` are returned.
.. plot::
:context: close-figs
>>> axes = df.plot.bar(rot=0, subplots=True)
>>> axes[1].legend(loc=2) # doctest: +SKIP
If you don't like the default colours, you can specify how you'd
like each column to be colored.
.. plot::
:context: close-figs
>>> axes = df.plot.bar(
... rot=0, subplots=True, color={"speed": "red", "lifespan": "green"}
... )
>>> axes[1].legend(loc=2) # doctest: +SKIP
Plot a single column.
.. plot::
:context: close-figs
>>> ax = df.plot.bar(y='speed', rot=0)
Plot only selected categories for the DataFrame.
.. plot::
:context: close-figs
>>> ax = df.plot.bar(x='lifespan', rot=0)
"""
)
@Substitution(kind="bar")
@Appender(_bar_or_line_doc)
def bar( # pylint: disable=disallowed-name
self, x: Hashable | None = None, y: Hashable | None = None, **kwargs
) -> PlotAccessor:
"""
Vertical bar plot.
A bar plot is a plot that presents categorical data with
rectangular bars with lengths proportional to the values that they
represent. A bar plot shows comparisons among discrete categories. One
axis of the plot shows the specific categories being compared, and the
other axis represents a measured value.
"""
return self(kind="bar", x=x, y=y, **kwargs)
@Appender(
"""
See Also
--------
DataFrame.plot.bar: Vertical bar plot.
DataFrame.plot : Make plots of DataFrame using matplotlib.
matplotlib.axes.Axes.bar : Plot a vertical bar plot using matplotlib.
Examples
--------
Basic example
.. plot::
:context: close-figs
>>> df = pd.DataFrame({'lab': ['A', 'B', 'C'], 'val': [10, 30, 20]})
>>> ax = df.plot.barh(x='lab', y='val')
Plot a whole DataFrame to a horizontal bar plot
.. plot::
:context: close-figs
>>> speed = [0.1, 17.5, 40, 48, 52, 69, 88]
>>> lifespan = [2, 8, 70, 1.5, 25, 12, 28]
>>> index = ['snail', 'pig', 'elephant',
... 'rabbit', 'giraffe', 'coyote', 'horse']
>>> df = pd.DataFrame({'speed': speed,
... 'lifespan': lifespan}, index=index)
>>> ax = df.plot.barh()
Plot stacked barh charts for the DataFrame
.. plot::
:context: close-figs
>>> ax = df.plot.barh(stacked=True)
We can specify colors for each column
.. plot::
:context: close-figs
>>> ax = df.plot.barh(color={"speed": "red", "lifespan": "green"})
Plot a column of the DataFrame to a horizontal bar plot
.. plot::
:context: close-figs
>>> speed = [0.1, 17.5, 40, 48, 52, 69, 88]
>>> lifespan = [2, 8, 70, 1.5, 25, 12, 28]
>>> index = ['snail', 'pig', 'elephant',
... 'rabbit', 'giraffe', 'coyote', 'horse']
>>> df = pd.DataFrame({'speed': speed,
... 'lifespan': lifespan}, index=index)
>>> ax = df.plot.barh(y='speed')
Plot DataFrame versus the desired column
.. plot::
:context: close-figs
>>> speed = [0.1, 17.5, 40, 48, 52, 69, 88]
>>> lifespan = [2, 8, 70, 1.5, 25, 12, 28]
>>> index = ['snail', 'pig', 'elephant',
... 'rabbit', 'giraffe', 'coyote', 'horse']
>>> df = pd.DataFrame({'speed': speed,
... 'lifespan': lifespan}, index=index)
>>> ax = df.plot.barh(x='lifespan')
"""
)
@Substitution(kind="bar")
@Appender(_bar_or_line_doc)
def barh(
self, x: Hashable | None = None, y: Hashable | None = None, **kwargs
) -> PlotAccessor:
"""
Make a horizontal bar plot.
A horizontal bar plot is a plot that presents quantitative data with
rectangular bars with lengths proportional to the values that they
represent. A bar plot shows comparisons among discrete categories. One
axis of the plot shows the specific categories being compared, and the
other axis represents a measured value.
"""
return self(kind="barh", x=x, y=y, **kwargs)
def box(self, by: IndexLabel | None = None, **kwargs) -> PlotAccessor:
r"""
Make a box plot of the DataFrame columns.
A box plot is a method for graphically depicting groups of numerical
data through their quartiles.
The box extends from the Q1 to Q3 quartile values of the data,
with a line at the median (Q2). The whiskers extend from the edges
of box to show the range of the data. The position of the whiskers
is set by default to 1.5*IQR (IQR = Q3 - Q1) from the edges of the
box. Outlier points are those past the end of the whiskers.
For further details see Wikipedia's
entry for `boxplot <https://en.wikipedia.org/wiki/Box_plot>`__.
A consideration when using this chart is that the box and the whiskers
can overlap, which is very common when plotting small sets of data.
Parameters
----------
by : str or sequence
Column in the DataFrame to group by.
.. versionchanged:: 1.4.0
Previously, `by` is silently ignore and makes no groupings
**kwargs
Additional keywords are documented in
:meth:`DataFrame.plot`.
Returns
-------
:class:`matplotlib.axes.Axes` or numpy.ndarray of them
See Also
--------
DataFrame.boxplot: Another method to draw a box plot.
Series.plot.box: Draw a box plot from a Series object.
matplotlib.pyplot.boxplot: Draw a box plot in matplotlib.
Examples
--------
Draw a box plot from a DataFrame with four columns of randomly
generated data.
.. plot::
:context: close-figs
>>> np.random.seed(1234)
>>> data = np.random.randn(25, 4)
>>> df = pd.DataFrame(data, columns=list('ABCD'))
>>> ax = df.plot.box()
You can also generate groupings if you specify the `by` parameter (which
can take a column name, or a list or tuple of column names):
.. versionchanged:: 1.4.0
.. plot::
:context: close-figs
>>> age_list = [8, 10, 12, 14, 72, 74, 76, 78, 20, 25, 30, 35, 60, 85]
>>> df = pd.DataFrame({"gender": list("MMMMMMMMFFFFFF"), "age": age_list})
>>> ax = df.plot.box(column="age", by="gender", figsize=(10, 8))
"""
return self(kind="box", by=by, **kwargs)
def hist(
self, by: IndexLabel | None = None, bins: int = 10, **kwargs
) -> PlotAccessor:
"""
Draw one histogram of the DataFrame's columns.
A histogram is a representation of the distribution of data.
This function groups the values of all given Series in the DataFrame
into bins and draws all bins in one :class:`matplotlib.axes.Axes`.
This is useful when the DataFrame's Series are in a similar scale.
Parameters
----------
by : str or sequence, optional
Column in the DataFrame to group by.
.. versionchanged:: 1.4.0
Previously, `by` is silently ignore and makes no groupings
bins : int, default 10
Number of histogram bins to be used.
**kwargs
Additional keyword arguments are documented in
:meth:`DataFrame.plot`.
Returns
-------
class:`matplotlib.AxesSubplot`
Return a histogram plot.
See Also
--------
DataFrame.hist : Draw histograms per DataFrame's Series.
Series.hist : Draw a histogram with Series' data.
Examples
--------
When we roll a die 6000 times, we expect to get each value around 1000
times. But when we roll two dice and sum the result, the distribution
is going to be quite different. A histogram illustrates those
distributions.
.. plot::
:context: close-figs
>>> np.random.seed(1234)
>>> df = pd.DataFrame(np.random.randint(1, 7, 6000), columns=['one'])
>>> df['two'] = df['one'] + np.random.randint(1, 7, 6000)
>>> ax = df.plot.hist(bins=12, alpha=0.5)
A grouped histogram can be generated by providing the parameter `by` (which
can be a column name, or a list of column names):
.. plot::
:context: close-figs
>>> age_list = [8, 10, 12, 14, 72, 74, 76, 78, 20, 25, 30, 35, 60, 85]
>>> df = pd.DataFrame({"gender": list("MMMMMMMMFFFFFF"), "age": age_list})
>>> ax = df.plot.hist(column=["age"], by="gender", figsize=(10, 8))
"""
return self(kind="hist", by=by, bins=bins, **kwargs)
def kde(
self,
bw_method: Literal["scott", "silverman"] | float | Callable | None = None,
ind: np.ndarray | int | None = None,
**kwargs,
) -> PlotAccessor:
"""
Generate Kernel Density Estimate plot using Gaussian kernels.
In statistics, `kernel density estimation`_ (KDE) is a non-parametric
way to estimate the probability density function (PDF) of a random
variable. This function uses Gaussian kernels and includes automatic
bandwidth determination.
.. _kernel density estimation:
https://en.wikipedia.org/wiki/Kernel_density_estimation
Parameters
----------
bw_method : str, scalar or callable, optional
The method used to calculate the estimator bandwidth. This can be
'scott', 'silverman', a scalar constant or a callable.
If None (default), 'scott' is used.
See :class:`scipy.stats.gaussian_kde` for more information.
ind : NumPy array or int, optional
Evaluation points for the estimated PDF. If None (default),
1000 equally spaced points are used. If `ind` is a NumPy array, the
KDE is evaluated at the points passed. If `ind` is an integer,
`ind` number of equally spaced points are used.
**kwargs
Additional keyword arguments are documented in
:meth:`DataFrame.plot`.
Returns
-------
matplotlib.axes.Axes or numpy.ndarray of them
See Also
--------
scipy.stats.gaussian_kde : Representation of a kernel-density
estimate using Gaussian kernels. This is the function used
internally to estimate the PDF.
Examples
--------
Given a Series of points randomly sampled from an unknown
distribution, estimate its PDF using KDE with automatic
bandwidth determination and plot the results, evaluating them at
1000 equally spaced points (default):
.. plot::
:context: close-figs
>>> s = pd.Series([1, 2, 2.5, 3, 3.5, 4, 5])
>>> ax = s.plot.kde()
A scalar bandwidth can be specified. Using a small bandwidth value can
lead to over-fitting, while using a large bandwidth value may result
in under-fitting:
.. plot::
:context: close-figs
>>> ax = s.plot.kde(bw_method=0.3)
.. plot::
:context: close-figs
>>> ax = s.plot.kde(bw_method=3)
Finally, the `ind` parameter determines the evaluation points for the
plot of the estimated PDF:
.. plot::
:context: close-figs
>>> ax = s.plot.kde(ind=[1, 2, 3, 4, 5])
For DataFrame, it works in the same way:
.. plot::
:context: close-figs
>>> df = pd.DataFrame({
... 'x': [1, 2, 2.5, 3, 3.5, 4, 5],
... 'y': [4, 4, 4.5, 5, 5.5, 6, 6],
... })
>>> ax = df.plot.kde()
A scalar bandwidth can be specified. Using a small bandwidth value can
lead to over-fitting, while using a large bandwidth value may result
in under-fitting:
.. plot::
:context: close-figs
>>> ax = df.plot.kde(bw_method=0.3)
.. plot::
:context: close-figs
>>> ax = df.plot.kde(bw_method=3)
Finally, the `ind` parameter determines the evaluation points for the
plot of the estimated PDF:
.. plot::
:context: close-figs
>>> ax = df.plot.kde(ind=[1, 2, 3, 4, 5, 6])
"""
return self(kind="kde", bw_method=bw_method, ind=ind, **kwargs)
density = kde
def area(
self,
x: Hashable | None = None,
y: Hashable | None = None,
stacked: bool = True,
**kwargs,
) -> PlotAccessor:
"""
Draw a stacked area plot.
An area plot displays quantitative data visually.
This function wraps the matplotlib area function.
Parameters
----------
x : label or position, optional
Coordinates for the X axis. By default uses the index.
y : label or position, optional
Column to plot. By default uses all columns.
stacked : bool, default True
Area plots are stacked by default. Set to False to create a
unstacked plot.
**kwargs
Additional keyword arguments are documented in
:meth:`DataFrame.plot`.
Returns
-------
matplotlib.axes.Axes or numpy.ndarray
Area plot, or array of area plots if subplots is True.
See Also
--------
DataFrame.plot : Make plots of DataFrame using matplotlib / pylab.
Examples
--------
Draw an area plot based on basic business metrics:
.. plot::
:context: close-figs
>>> df = pd.DataFrame({
... 'sales': [3, 2, 3, 9, 10, 6],
... 'signups': [5, 5, 6, 12, 14, 13],
... 'visits': [20, 42, 28, 62, 81, 50],
... }, index=pd.date_range(start='2018/01/01', end='2018/07/01',
... freq='ME'))
>>> ax = df.plot.area()
Area plots are stacked by default. To produce an unstacked plot,
pass ``stacked=False``:
.. plot::
:context: close-figs
>>> ax = df.plot.area(stacked=False)
Draw an area plot for a single column:
.. plot::
:context: close-figs
>>> ax = df.plot.area(y='sales')
Draw with a different `x`:
.. plot::
:context: close-figs
>>> df = pd.DataFrame({
... 'sales': [3, 2, 3],
... 'visits': [20, 42, 28],
... 'day': [1, 2, 3],
... })
>>> ax = df.plot.area(x='day')
"""
return self(kind="area", x=x, y=y, stacked=stacked, **kwargs)
def pie(self, **kwargs) -> PlotAccessor:
"""
Generate a pie plot.
A pie plot is a proportional representation of the numerical data in a
column. This function wraps :meth:`matplotlib.pyplot.pie` for the
specified column. If no column reference is passed and
``subplots=True`` a pie plot is drawn for each numerical column
independently.
Parameters
----------
y : int or label, optional
Label or position of the column to plot.
If not provided, ``subplots=True`` argument must be passed.
**kwargs
Keyword arguments to pass on to :meth:`DataFrame.plot`.
Returns
-------
matplotlib.axes.Axes or np.ndarray of them
A NumPy array is returned when `subplots` is True.
See Also
--------
Series.plot.pie : Generate a pie plot for a Series.
DataFrame.plot : Make plots of a DataFrame.
Examples
--------
In the example below we have a DataFrame with the information about
planet's mass and radius. We pass the 'mass' column to the
pie function to get a pie plot.
.. plot::
:context: close-figs
>>> df = pd.DataFrame({'mass': [0.330, 4.87 , 5.97],
... 'radius': [2439.7, 6051.8, 6378.1]},
... index=['Mercury', 'Venus', 'Earth'])
>>> plot = df.plot.pie(y='mass', figsize=(5, 5))
.. plot::
:context: close-figs
>>> plot = df.plot.pie(subplots=True, figsize=(11, 6))
"""
if (
isinstance(self._parent, ABCDataFrame)
and kwargs.get("y", None) is None
and not kwargs.get("subplots", False)
):
raise ValueError("pie requires either y column or 'subplots=True'")
return self(kind="pie", **kwargs)
def scatter(
self,
x: Hashable,
y: Hashable,
s: Hashable | Sequence[Hashable] | None = None,
c: Hashable | Sequence[Hashable] | None = None,
**kwargs,
) -> PlotAccessor:
"""
Create a scatter plot with varying marker point size and color.
The coordinates of each point are defined by two dataframe columns and
filled circles are used to represent each point. This kind of plot is
useful to see complex correlations between two variables. Points could
be for instance natural 2D coordinates like longitude and latitude in
a map or, in general, any pair of metrics that can be plotted against
each other.
Parameters
----------
x : int or str
The column name or column position to be used as horizontal
coordinates for each point.
y : int or str
The column name or column position to be used as vertical
coordinates for each point.
s : str, scalar or array-like, optional
The size of each point. Possible values are:
- A string with the name of the column to be used for marker's size.
- A single scalar so all points have the same size.
- A sequence of scalars, which will be used for each point's size
recursively. For instance, when passing [2,14] all points size
will be either 2 or 14, alternatively.
c : str, int or array-like, optional
The color of each point. Possible values are:
- A single color string referred to by name, RGB or RGBA code,
for instance 'red' or '#a98d19'.
- A sequence of color strings referred to by name, RGB or RGBA
code, which will be used for each point's color recursively. For
instance ['green','yellow'] all points will be filled in green or
yellow, alternatively.
- A column name or position whose values will be used to color the
marker points according to a colormap.
**kwargs
Keyword arguments to pass on to :meth:`DataFrame.plot`.
Returns
-------
:class:`matplotlib.axes.Axes` or numpy.ndarray of them
See Also
--------
matplotlib.pyplot.scatter : Scatter plot using multiple input data
formats.
Examples
--------
Let's see how to draw a scatter plot using coordinates from the values
in a DataFrame's columns.
.. plot::
:context: close-figs
>>> df = pd.DataFrame([[5.1, 3.5, 0], [4.9, 3.0, 0], [7.0, 3.2, 1],
... [6.4, 3.2, 1], [5.9, 3.0, 2]],
... columns=['length', 'width', 'species'])
>>> ax1 = df.plot.scatter(x='length',
... y='width',
... c='DarkBlue')
And now with the color determined by a column as well.
.. plot::
:context: close-figs
>>> ax2 = df.plot.scatter(x='length',
... y='width',
... c='species',
... colormap='viridis')
"""
return self(kind="scatter", x=x, y=y, s=s, c=c, **kwargs)
def hexbin(
self,
x: Hashable,
y: Hashable,
C: Hashable | None = None,
reduce_C_function: Callable | None = None,
gridsize: int | tuple[int, int] | None = None,
**kwargs,
) -> PlotAccessor:
"""
Generate a hexagonal binning plot.
Generate a hexagonal binning plot of `x` versus `y`. If `C` is `None`
(the default), this is a histogram of the number of occurrences
of the observations at ``(x[i], y[i])``.
If `C` is specified, specifies values at given coordinates
``(x[i], y[i])``. These values are accumulated for each hexagonal
bin and then reduced according to `reduce_C_function`,
having as default the NumPy's mean function (:meth:`numpy.mean`).
(If `C` is specified, it must also be a 1-D sequence
of the same length as `x` and `y`, or a column label.)
Parameters
----------
x : int or str
The column label or position for x points.
y : int or str
The column label or position for y points.
C : int or str, optional
The column label or position for the value of `(x, y)` point.
reduce_C_function : callable, default `np.mean`
Function of one argument that reduces all the values in a bin to
a single number (e.g. `np.mean`, `np.max`, `np.sum`, `np.std`).
gridsize : int or tuple of (int, int), default 100
The number of hexagons in the x-direction.
The corresponding number of hexagons in the y-direction is
chosen in a way that the hexagons are approximately regular.
Alternatively, gridsize can be a tuple with two elements
specifying the number of hexagons in the x-direction and the
y-direction.
**kwargs
Additional keyword arguments are documented in
:meth:`DataFrame.plot`.
Returns
-------
matplotlib.AxesSubplot
The matplotlib ``Axes`` on which the hexbin is plotted.
See Also
--------
DataFrame.plot : Make plots of a DataFrame.
matplotlib.pyplot.hexbin : Hexagonal binning plot using matplotlib,
the matplotlib function that is used under the hood.
Examples
--------
The following examples are generated with random data from
a normal distribution.
.. plot::
:context: close-figs
>>> np.random.seed(1234)
>>> n = 10000
>>> df = pd.DataFrame({'x': np.random.randn(n),
... 'y': np.random.randn(n)})
>>> ax = df.plot.hexbin(x='x', y='y', gridsize=20)
The next example uses `C` and `np.sum` as `reduce_C_function`.
Note that `'observations'` values ranges from 1 to 5 but the result
plot shows values up to more than 25. This is because of the
`reduce_C_function`.
.. plot::
:context: close-figs
>>> n = 500
>>> df = pd.DataFrame({
... 'coord_x': np.random.uniform(-3, 3, size=n),
... 'coord_y': np.random.uniform(30, 50, size=n),
... 'observations': np.random.randint(1,5, size=n)
... })
>>> ax = df.plot.hexbin(x='coord_x',
... y='coord_y',
... C='observations',
... reduce_C_function=np.sum,
... gridsize=10,
... cmap="viridis")
"""
if reduce_C_function is not None:
kwargs["reduce_C_function"] = reduce_C_function
if gridsize is not None:
kwargs["gridsize"] = gridsize
return self(kind="hexbin", x=x, y=y, C=C, **kwargs)
_backends: dict[str, types.ModuleType] = {}
def _load_backend(backend: str) -> types.ModuleType:
"""
Load a pandas plotting backend.
Parameters
----------
backend : str
The identifier for the backend. Either an entrypoint item registered
with importlib.metadata, "matplotlib", or a module name.
Returns
-------
types.ModuleType
The imported backend.
"""
from importlib.metadata import entry_points
if backend == "matplotlib":
# Because matplotlib is an optional dependency and first-party backend,
# we need to attempt an import here to raise an ImportError if needed.
try:
module = importlib.import_module("pandas.plotting._matplotlib")
except ImportError:
raise ImportError(
"matplotlib is required for plotting when the "
'default backend "matplotlib" is selected.'
) from None
return module
found_backend = False
eps = entry_points()
key = "pandas_plotting_backends"
# entry_points lost dict API ~ PY 3.10
# https://github.com/python/importlib_metadata/issues/298
if hasattr(eps, "select"):
entry = eps.select(group=key)
else:
# Argument 2 to "get" of "dict" has incompatible type "Tuple[]";
# expected "EntryPoints" [arg-type]
entry = eps.get(key, ()) # type: ignore[arg-type]
for entry_point in entry:
found_backend = entry_point.name == backend
if found_backend:
module = entry_point.load()
break
if not found_backend:
# Fall back to unregistered, module name approach.
try:
module = importlib.import_module(backend)
found_backend = True
except ImportError:
# We re-raise later on.
pass
if found_backend:
if hasattr(module, "plot"):
# Validate that the interface is implemented when the option is set,
# rather than at plot time.
return module
raise ValueError(
f"Could not find plotting backend '{backend}'. Ensure that you've "
f"installed the package providing the '{backend}' entrypoint, or that "
"the package has a top-level `.plot` method."
)
def _get_plot_backend(backend: str | None = None):
"""
Return the plotting backend to use (e.g. `pandas.plotting._matplotlib`).
The plotting system of pandas uses matplotlib by default, but the idea here
is that it can also work with other third-party backends. This function
returns the module which provides a top-level `.plot` method that will
actually do the plotting. The backend is specified from a string, which
either comes from the keyword argument `backend`, or, if not specified, from
the option `pandas.options.plotting.backend`. All the rest of the code in
this file uses the backend specified there for the plotting.
The backend is imported lazily, as matplotlib is a soft dependency, and
pandas can be used without it being installed.
Notes
-----
Modifies `_backends` with imported backend as a side effect.
"""
backend_str: str = backend or get_option("plotting.backend")
if backend_str in _backends:
return _backends[backend_str]
module = _load_backend(backend_str)
_backends[backend_str] = module
return module
|