1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
|
from __future__ import annotations
import numpy as np
import pytest
from pandas.compat import HAS_PYARROW
import pandas.util._test_decorators as td
from pandas.core.dtypes.astype import astype_array
import pandas.core.dtypes.common as com
from pandas.core.dtypes.dtypes import (
CategoricalDtype,
CategoricalDtypeType,
DatetimeTZDtype,
ExtensionDtype,
IntervalDtype,
PeriodDtype,
)
from pandas.core.dtypes.missing import isna
import pandas as pd
import pandas._testing as tm
from pandas.api.types import pandas_dtype
from pandas.arrays import SparseArray
from pandas.util.version import Version
# EA & Actual Dtypes
def to_ea_dtypes(dtypes):
"""convert list of string dtypes to EA dtype"""
return [getattr(pd, dt + "Dtype") for dt in dtypes]
def to_numpy_dtypes(dtypes):
"""convert list of string dtypes to numpy dtype"""
return [getattr(np, dt) for dt in dtypes if isinstance(dt, str)]
class TestNumpyEADtype:
# Passing invalid dtype, both as a string or object, must raise TypeError
# Per issue GH15520
@pytest.mark.parametrize("box", [pd.Timestamp, "pd.Timestamp", list])
def test_invalid_dtype_error(self, box):
with pytest.raises(TypeError, match="not understood"):
com.pandas_dtype(box)
@pytest.mark.parametrize(
"dtype",
[
object,
"float64",
np.object_,
np.dtype("object"),
"O",
np.float64,
float,
np.dtype("float64"),
"object_",
],
)
def test_pandas_dtype_valid(self, dtype):
assert com.pandas_dtype(dtype) == dtype
@pytest.mark.parametrize(
"dtype", ["M8[ns]", "m8[ns]", "object", "float64", "int64"]
)
def test_numpy_dtype(self, dtype):
assert com.pandas_dtype(dtype) == np.dtype(dtype)
def test_numpy_string_dtype(self):
# do not parse freq-like string as period dtype
assert com.pandas_dtype("U") == np.dtype("U")
assert com.pandas_dtype("S") == np.dtype("S")
@pytest.mark.parametrize(
"dtype",
[
"datetime64[ns, US/Eastern]",
"datetime64[ns, Asia/Tokyo]",
"datetime64[ns, UTC]",
# GH#33885 check that the M8 alias is understood
"M8[ns, US/Eastern]",
"M8[ns, Asia/Tokyo]",
"M8[ns, UTC]",
],
)
def test_datetimetz_dtype(self, dtype):
assert com.pandas_dtype(dtype) == DatetimeTZDtype.construct_from_string(dtype)
assert com.pandas_dtype(dtype) == dtype
def test_categorical_dtype(self):
assert com.pandas_dtype("category") == CategoricalDtype()
@pytest.mark.parametrize(
"dtype",
[
"period[D]",
"period[3M]",
"period[us]",
"Period[D]",
"Period[3M]",
"Period[us]",
],
)
def test_period_dtype(self, dtype):
assert com.pandas_dtype(dtype) is not PeriodDtype(dtype)
assert com.pandas_dtype(dtype) == PeriodDtype(dtype)
assert com.pandas_dtype(dtype) == dtype
dtypes = {
"datetime_tz": com.pandas_dtype("datetime64[ns, US/Eastern]"),
"datetime": com.pandas_dtype("datetime64[ns]"),
"timedelta": com.pandas_dtype("timedelta64[ns]"),
"period": PeriodDtype("D"),
"integer": np.dtype(np.int64),
"float": np.dtype(np.float64),
"object": np.dtype(object),
"category": com.pandas_dtype("category"),
"string": pd.StringDtype(),
}
@pytest.mark.parametrize("name1,dtype1", list(dtypes.items()), ids=lambda x: str(x))
@pytest.mark.parametrize("name2,dtype2", list(dtypes.items()), ids=lambda x: str(x))
def test_dtype_equal(name1, dtype1, name2, dtype2):
# match equal to self, but not equal to other
assert com.is_dtype_equal(dtype1, dtype1)
if name1 != name2:
assert not com.is_dtype_equal(dtype1, dtype2)
@pytest.mark.parametrize("name,dtype", list(dtypes.items()), ids=lambda x: str(x))
def test_pyarrow_string_import_error(name, dtype):
# GH-44276
assert not com.is_dtype_equal(dtype, "string[pyarrow]")
@pytest.mark.parametrize(
"dtype1,dtype2",
[
(np.int8, np.int64),
(np.int16, np.int64),
(np.int32, np.int64),
(np.float32, np.float64),
(PeriodDtype("D"), PeriodDtype("2D")), # PeriodType
(
com.pandas_dtype("datetime64[ns, US/Eastern]"),
com.pandas_dtype("datetime64[ns, CET]"),
), # Datetime
(None, None), # gh-15941: no exception should be raised.
],
)
def test_dtype_equal_strict(dtype1, dtype2):
assert not com.is_dtype_equal(dtype1, dtype2)
def get_is_dtype_funcs():
"""
Get all functions in pandas.core.dtypes.common that
begin with 'is_' and end with 'dtype'
"""
fnames = [f for f in dir(com) if (f.startswith("is_") and f.endswith("dtype"))]
fnames.remove("is_string_or_object_np_dtype") # fastpath requires np.dtype obj
return [getattr(com, fname) for fname in fnames]
@pytest.mark.filterwarnings(
"ignore:is_categorical_dtype is deprecated:DeprecationWarning"
)
@pytest.mark.parametrize("func", get_is_dtype_funcs(), ids=lambda x: x.__name__)
def test_get_dtype_error_catch(func):
# see gh-15941
#
# No exception should be raised.
msg = f"{func.__name__} is deprecated"
warn = None
if (
func is com.is_int64_dtype
or func is com.is_interval_dtype
or func is com.is_datetime64tz_dtype
or func is com.is_categorical_dtype
or func is com.is_period_dtype
):
warn = DeprecationWarning
with tm.assert_produces_warning(warn, match=msg):
assert not func(None)
def test_is_object():
assert com.is_object_dtype(object)
assert com.is_object_dtype(np.array([], dtype=object))
assert not com.is_object_dtype(int)
assert not com.is_object_dtype(np.array([], dtype=int))
assert not com.is_object_dtype([1, 2, 3])
@pytest.mark.parametrize(
"check_scipy", [False, pytest.param(True, marks=td.skip_if_no("scipy"))]
)
def test_is_sparse(check_scipy):
msg = "is_sparse is deprecated"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
assert com.is_sparse(SparseArray([1, 2, 3]))
assert not com.is_sparse(np.array([1, 2, 3]))
if check_scipy:
import scipy.sparse
assert not com.is_sparse(scipy.sparse.bsr_matrix([1, 2, 3]))
def test_is_scipy_sparse():
sp_sparse = td.versioned_importorskip("scipy.sparse")
assert com.is_scipy_sparse(sp_sparse.bsr_matrix([1, 2, 3]))
assert not com.is_scipy_sparse(SparseArray([1, 2, 3]))
def test_is_datetime64_dtype():
assert not com.is_datetime64_dtype(object)
assert not com.is_datetime64_dtype([1, 2, 3])
assert not com.is_datetime64_dtype(np.array([], dtype=int))
assert com.is_datetime64_dtype(np.datetime64)
assert com.is_datetime64_dtype(np.array([], dtype=np.datetime64))
def test_is_datetime64tz_dtype():
msg = "is_datetime64tz_dtype is deprecated"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
assert not com.is_datetime64tz_dtype(object)
assert not com.is_datetime64tz_dtype([1, 2, 3])
assert not com.is_datetime64tz_dtype(pd.DatetimeIndex([1, 2, 3]))
assert com.is_datetime64tz_dtype(pd.DatetimeIndex(["2000"], tz="US/Eastern"))
def test_custom_ea_kind_M_not_datetime64tz():
# GH 34986
class NotTZDtype(ExtensionDtype):
@property
def kind(self) -> str:
return "M"
not_tz_dtype = NotTZDtype()
msg = "is_datetime64tz_dtype is deprecated"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
assert not com.is_datetime64tz_dtype(not_tz_dtype)
assert not com.needs_i8_conversion(not_tz_dtype)
def test_is_timedelta64_dtype():
assert not com.is_timedelta64_dtype(object)
assert not com.is_timedelta64_dtype(None)
assert not com.is_timedelta64_dtype([1, 2, 3])
assert not com.is_timedelta64_dtype(np.array([], dtype=np.datetime64))
assert not com.is_timedelta64_dtype("0 days")
assert not com.is_timedelta64_dtype("0 days 00:00:00")
assert not com.is_timedelta64_dtype(["0 days 00:00:00"])
assert not com.is_timedelta64_dtype("NO DATE")
assert com.is_timedelta64_dtype(np.timedelta64)
assert com.is_timedelta64_dtype(pd.Series([], dtype="timedelta64[ns]"))
assert com.is_timedelta64_dtype(pd.to_timedelta(["0 days", "1 days"]))
def test_is_period_dtype():
msg = "is_period_dtype is deprecated"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
assert not com.is_period_dtype(object)
assert not com.is_period_dtype([1, 2, 3])
assert not com.is_period_dtype(pd.Period("2017-01-01"))
assert com.is_period_dtype(PeriodDtype(freq="D"))
assert com.is_period_dtype(pd.PeriodIndex([], freq="Y"))
def test_is_interval_dtype():
msg = "is_interval_dtype is deprecated"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
assert not com.is_interval_dtype(object)
assert not com.is_interval_dtype([1, 2, 3])
assert com.is_interval_dtype(IntervalDtype())
interval = pd.Interval(1, 2, closed="right")
assert not com.is_interval_dtype(interval)
assert com.is_interval_dtype(pd.IntervalIndex([interval]))
def test_is_categorical_dtype():
msg = "is_categorical_dtype is deprecated"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
assert not com.is_categorical_dtype(object)
assert not com.is_categorical_dtype([1, 2, 3])
assert com.is_categorical_dtype(CategoricalDtype())
assert com.is_categorical_dtype(pd.Categorical([1, 2, 3]))
assert com.is_categorical_dtype(pd.CategoricalIndex([1, 2, 3]))
@pytest.mark.parametrize(
"dtype, expected",
[
(int, False),
(pd.Series([1, 2]), False),
(str, True),
(object, True),
(np.array(["a", "b"]), True),
(pd.StringDtype(), True),
(pd.Index([], dtype="O"), True),
],
)
def test_is_string_dtype(dtype, expected):
# GH#54661
result = com.is_string_dtype(dtype)
assert result is expected
@pytest.mark.parametrize(
"data",
[[(0, 1), (1, 1)], pd.Categorical([1, 2, 3]), np.array([1, 2], dtype=object)],
)
def test_is_string_dtype_arraylike_with_object_elements_not_strings(data):
# GH 15585
assert not com.is_string_dtype(pd.Series(data))
def test_is_string_dtype_nullable(nullable_string_dtype):
assert com.is_string_dtype(pd.array(["a", "b"], dtype=nullable_string_dtype))
integer_dtypes: list = []
@pytest.mark.parametrize(
"dtype",
integer_dtypes
+ [pd.Series([1, 2])]
+ tm.ALL_INT_NUMPY_DTYPES
+ to_numpy_dtypes(tm.ALL_INT_NUMPY_DTYPES)
+ tm.ALL_INT_EA_DTYPES
+ to_ea_dtypes(tm.ALL_INT_EA_DTYPES),
)
def test_is_integer_dtype(dtype):
assert com.is_integer_dtype(dtype)
@pytest.mark.parametrize(
"dtype",
[
str,
float,
np.datetime64,
np.timedelta64,
pd.Index([1, 2.0]),
np.array(["a", "b"]),
np.array([], dtype=np.timedelta64),
],
)
def test_is_not_integer_dtype(dtype):
assert not com.is_integer_dtype(dtype)
signed_integer_dtypes: list = []
@pytest.mark.parametrize(
"dtype",
signed_integer_dtypes
+ [pd.Series([1, 2])]
+ tm.SIGNED_INT_NUMPY_DTYPES
+ to_numpy_dtypes(tm.SIGNED_INT_NUMPY_DTYPES)
+ tm.SIGNED_INT_EA_DTYPES
+ to_ea_dtypes(tm.SIGNED_INT_EA_DTYPES),
)
def test_is_signed_integer_dtype(dtype):
assert com.is_integer_dtype(dtype)
@pytest.mark.parametrize(
"dtype",
[
str,
float,
np.datetime64,
np.timedelta64,
pd.Index([1, 2.0]),
np.array(["a", "b"]),
np.array([], dtype=np.timedelta64),
]
+ tm.UNSIGNED_INT_NUMPY_DTYPES
+ to_numpy_dtypes(tm.UNSIGNED_INT_NUMPY_DTYPES)
+ tm.UNSIGNED_INT_EA_DTYPES
+ to_ea_dtypes(tm.UNSIGNED_INT_EA_DTYPES),
)
def test_is_not_signed_integer_dtype(dtype):
assert not com.is_signed_integer_dtype(dtype)
unsigned_integer_dtypes: list = []
@pytest.mark.parametrize(
"dtype",
unsigned_integer_dtypes
+ [pd.Series([1, 2], dtype=np.uint32)]
+ tm.UNSIGNED_INT_NUMPY_DTYPES
+ to_numpy_dtypes(tm.UNSIGNED_INT_NUMPY_DTYPES)
+ tm.UNSIGNED_INT_EA_DTYPES
+ to_ea_dtypes(tm.UNSIGNED_INT_EA_DTYPES),
)
def test_is_unsigned_integer_dtype(dtype):
assert com.is_unsigned_integer_dtype(dtype)
@pytest.mark.parametrize(
"dtype",
[
str,
float,
np.datetime64,
np.timedelta64,
pd.Index([1, 2.0]),
np.array(["a", "b"]),
np.array([], dtype=np.timedelta64),
]
+ tm.SIGNED_INT_NUMPY_DTYPES
+ to_numpy_dtypes(tm.SIGNED_INT_NUMPY_DTYPES)
+ tm.SIGNED_INT_EA_DTYPES
+ to_ea_dtypes(tm.SIGNED_INT_EA_DTYPES),
)
def test_is_not_unsigned_integer_dtype(dtype):
assert not com.is_unsigned_integer_dtype(dtype)
@pytest.mark.parametrize(
"dtype", [np.int64, np.array([1, 2], dtype=np.int64), "Int64", pd.Int64Dtype]
)
def test_is_int64_dtype(dtype):
msg = "is_int64_dtype is deprecated"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
assert com.is_int64_dtype(dtype)
def test_type_comparison_with_numeric_ea_dtype(any_numeric_ea_dtype):
# GH#43038
assert pandas_dtype(any_numeric_ea_dtype) == any_numeric_ea_dtype
def test_type_comparison_with_real_numpy_dtype(any_real_numpy_dtype):
# GH#43038
assert pandas_dtype(any_real_numpy_dtype) == any_real_numpy_dtype
def test_type_comparison_with_signed_int_ea_dtype_and_signed_int_numpy_dtype(
any_signed_int_ea_dtype, any_signed_int_numpy_dtype
):
# GH#43038
assert not pandas_dtype(any_signed_int_ea_dtype) == any_signed_int_numpy_dtype
@pytest.mark.parametrize(
"dtype",
[
str,
float,
np.int32,
np.uint64,
pd.Index([1, 2.0]),
np.array(["a", "b"]),
np.array([1, 2], dtype=np.uint32),
"int8",
"Int8",
pd.Int8Dtype,
],
)
def test_is_not_int64_dtype(dtype):
msg = "is_int64_dtype is deprecated"
with tm.assert_produces_warning(DeprecationWarning, match=msg):
assert not com.is_int64_dtype(dtype)
def test_is_datetime64_any_dtype():
assert not com.is_datetime64_any_dtype(int)
assert not com.is_datetime64_any_dtype(str)
assert not com.is_datetime64_any_dtype(np.array([1, 2]))
assert not com.is_datetime64_any_dtype(np.array(["a", "b"]))
assert com.is_datetime64_any_dtype(np.datetime64)
assert com.is_datetime64_any_dtype(np.array([], dtype=np.datetime64))
assert com.is_datetime64_any_dtype(DatetimeTZDtype("ns", "US/Eastern"))
assert com.is_datetime64_any_dtype(
pd.DatetimeIndex([1, 2, 3], dtype="datetime64[ns]")
)
def test_is_datetime64_ns_dtype():
assert not com.is_datetime64_ns_dtype(int)
assert not com.is_datetime64_ns_dtype(str)
assert not com.is_datetime64_ns_dtype(np.datetime64)
assert not com.is_datetime64_ns_dtype(np.array([1, 2]))
assert not com.is_datetime64_ns_dtype(np.array(["a", "b"]))
assert not com.is_datetime64_ns_dtype(np.array([], dtype=np.datetime64))
# This datetime array has the wrong unit (ps instead of ns)
assert not com.is_datetime64_ns_dtype(np.array([], dtype="datetime64[ps]"))
assert com.is_datetime64_ns_dtype(DatetimeTZDtype("ns", "US/Eastern"))
assert com.is_datetime64_ns_dtype(
pd.DatetimeIndex([1, 2, 3], dtype=np.dtype("datetime64[ns]"))
)
# non-nano dt64tz
assert not com.is_datetime64_ns_dtype(DatetimeTZDtype("us", "US/Eastern"))
def test_is_timedelta64_ns_dtype():
assert not com.is_timedelta64_ns_dtype(np.dtype("m8[ps]"))
assert not com.is_timedelta64_ns_dtype(np.array([1, 2], dtype=np.timedelta64))
assert com.is_timedelta64_ns_dtype(np.dtype("m8[ns]"))
assert com.is_timedelta64_ns_dtype(np.array([1, 2], dtype="m8[ns]"))
def test_is_numeric_v_string_like():
assert not com.is_numeric_v_string_like(np.array([1]), 1)
assert not com.is_numeric_v_string_like(np.array([1]), np.array([2]))
assert not com.is_numeric_v_string_like(np.array(["foo"]), np.array(["foo"]))
assert com.is_numeric_v_string_like(np.array([1]), "foo")
assert com.is_numeric_v_string_like(np.array([1, 2]), np.array(["foo"]))
assert com.is_numeric_v_string_like(np.array(["foo"]), np.array([1, 2]))
def test_needs_i8_conversion():
assert not com.needs_i8_conversion(str)
assert not com.needs_i8_conversion(np.int64)
assert not com.needs_i8_conversion(pd.Series([1, 2]))
assert not com.needs_i8_conversion(np.array(["a", "b"]))
assert not com.needs_i8_conversion(np.datetime64)
assert com.needs_i8_conversion(np.dtype(np.datetime64))
assert not com.needs_i8_conversion(pd.Series([], dtype="timedelta64[ns]"))
assert com.needs_i8_conversion(pd.Series([], dtype="timedelta64[ns]").dtype)
assert not com.needs_i8_conversion(pd.DatetimeIndex(["2000"], tz="US/Eastern"))
assert com.needs_i8_conversion(pd.DatetimeIndex(["2000"], tz="US/Eastern").dtype)
def test_is_numeric_dtype():
assert not com.is_numeric_dtype(str)
assert not com.is_numeric_dtype(np.datetime64)
assert not com.is_numeric_dtype(np.timedelta64)
assert not com.is_numeric_dtype(np.array(["a", "b"]))
assert not com.is_numeric_dtype(np.array([], dtype=np.timedelta64))
assert com.is_numeric_dtype(int)
assert com.is_numeric_dtype(float)
assert com.is_numeric_dtype(np.uint64)
assert com.is_numeric_dtype(pd.Series([1, 2]))
assert com.is_numeric_dtype(pd.Index([1, 2.0]))
class MyNumericDType(ExtensionDtype):
@property
def type(self):
return str
@property
def name(self):
raise NotImplementedError
@classmethod
def construct_array_type(cls):
raise NotImplementedError
def _is_numeric(self) -> bool:
return True
assert com.is_numeric_dtype(MyNumericDType())
def test_is_any_real_numeric_dtype():
assert not com.is_any_real_numeric_dtype(str)
assert not com.is_any_real_numeric_dtype(bool)
assert not com.is_any_real_numeric_dtype(complex)
assert not com.is_any_real_numeric_dtype(object)
assert not com.is_any_real_numeric_dtype(np.datetime64)
assert not com.is_any_real_numeric_dtype(np.array(["a", "b", complex(1, 2)]))
assert not com.is_any_real_numeric_dtype(pd.DataFrame([complex(1, 2), True]))
assert com.is_any_real_numeric_dtype(int)
assert com.is_any_real_numeric_dtype(float)
assert com.is_any_real_numeric_dtype(np.array([1, 2.5]))
def test_is_float_dtype():
assert not com.is_float_dtype(str)
assert not com.is_float_dtype(int)
assert not com.is_float_dtype(pd.Series([1, 2]))
assert not com.is_float_dtype(np.array(["a", "b"]))
assert com.is_float_dtype(float)
assert com.is_float_dtype(pd.Index([1, 2.0]))
def test_is_bool_dtype():
assert not com.is_bool_dtype(int)
assert not com.is_bool_dtype(str)
assert not com.is_bool_dtype(pd.Series([1, 2]))
assert not com.is_bool_dtype(pd.Series(["a", "b"], dtype="category"))
assert not com.is_bool_dtype(np.array(["a", "b"]))
assert not com.is_bool_dtype(pd.Index(["a", "b"]))
assert not com.is_bool_dtype("Int64")
assert com.is_bool_dtype(bool)
assert com.is_bool_dtype(np.bool_)
assert com.is_bool_dtype(pd.Series([True, False], dtype="category"))
assert com.is_bool_dtype(np.array([True, False]))
assert com.is_bool_dtype(pd.Index([True, False]))
assert com.is_bool_dtype(pd.BooleanDtype())
assert com.is_bool_dtype(pd.array([True, False, None], dtype="boolean"))
assert com.is_bool_dtype("boolean")
def test_is_bool_dtype_numpy_error():
# GH39010
assert not com.is_bool_dtype("0 - Name")
@pytest.mark.parametrize(
"check_scipy", [False, pytest.param(True, marks=td.skip_if_no("scipy"))]
)
def test_is_extension_array_dtype(check_scipy):
assert not com.is_extension_array_dtype([1, 2, 3])
assert not com.is_extension_array_dtype(np.array([1, 2, 3]))
assert not com.is_extension_array_dtype(pd.DatetimeIndex([1, 2, 3]))
cat = pd.Categorical([1, 2, 3])
assert com.is_extension_array_dtype(cat)
assert com.is_extension_array_dtype(pd.Series(cat))
assert com.is_extension_array_dtype(SparseArray([1, 2, 3]))
assert com.is_extension_array_dtype(pd.DatetimeIndex(["2000"], tz="US/Eastern"))
dtype = DatetimeTZDtype("ns", tz="US/Eastern")
s = pd.Series([], dtype=dtype)
assert com.is_extension_array_dtype(s)
if check_scipy:
import scipy.sparse
assert not com.is_extension_array_dtype(scipy.sparse.bsr_matrix([1, 2, 3]))
def test_is_complex_dtype():
assert not com.is_complex_dtype(int)
assert not com.is_complex_dtype(str)
assert not com.is_complex_dtype(pd.Series([1, 2]))
assert not com.is_complex_dtype(np.array(["a", "b"]))
assert com.is_complex_dtype(np.complex128)
assert com.is_complex_dtype(complex)
assert com.is_complex_dtype(np.array([1 + 1j, 5]))
@pytest.mark.parametrize(
"input_param,result",
[
(int, np.dtype(int)),
("int32", np.dtype("int32")),
(float, np.dtype(float)),
("float64", np.dtype("float64")),
(np.dtype("float64"), np.dtype("float64")),
(str, np.dtype(str)),
(pd.Series([1, 2], dtype=np.dtype("int16")), np.dtype("int16")),
(pd.Series(["a", "b"], dtype=object), np.dtype(object)),
(pd.Index([1, 2]), np.dtype("int64")),
(pd.Index(["a", "b"], dtype=object), np.dtype(object)),
("category", "category"),
(pd.Categorical(["a", "b"]).dtype, CategoricalDtype(["a", "b"])),
(pd.Categorical(["a", "b"]), CategoricalDtype(["a", "b"])),
(pd.CategoricalIndex(["a", "b"]).dtype, CategoricalDtype(["a", "b"])),
(pd.CategoricalIndex(["a", "b"]), CategoricalDtype(["a", "b"])),
(CategoricalDtype(), CategoricalDtype()),
(pd.DatetimeIndex([1, 2]), np.dtype("=M8[ns]")),
(pd.DatetimeIndex([1, 2]).dtype, np.dtype("=M8[ns]")),
("<M8[ns]", np.dtype("<M8[ns]")),
("datetime64[ns, Europe/London]", DatetimeTZDtype("ns", "Europe/London")),
(PeriodDtype(freq="D"), PeriodDtype(freq="D")),
("period[D]", PeriodDtype(freq="D")),
(IntervalDtype(), IntervalDtype()),
],
)
def test_get_dtype(input_param, result):
assert com._get_dtype(input_param) == result
@pytest.mark.parametrize(
"input_param,expected_error_message",
[
(None, "Cannot deduce dtype from null object"),
(1, "data type not understood"),
(1.2, "data type not understood"),
# numpy dev changed from double-quotes to single quotes
("random string", "data type [\"']random string[\"'] not understood"),
(pd.DataFrame([1, 2]), "data type not understood"),
],
)
def test_get_dtype_fails(input_param, expected_error_message):
# python objects
# 2020-02-02 npdev changed error message
expected_error_message += f"|Cannot interpret '{input_param}' as a data type"
with pytest.raises(TypeError, match=expected_error_message):
com._get_dtype(input_param)
@pytest.mark.parametrize(
"input_param,result",
[
(int, np.dtype(int).type),
("int32", np.int32),
(float, np.dtype(float).type),
("float64", np.float64),
(np.dtype("float64"), np.float64),
(str, np.dtype(str).type),
(pd.Series([1, 2], dtype=np.dtype("int16")), np.int16),
(pd.Series(["a", "b"], dtype=object), np.object_),
(pd.Index([1, 2], dtype="int64"), np.int64),
(pd.Index(["a", "b"], dtype=object), np.object_),
("category", CategoricalDtypeType),
(pd.Categorical(["a", "b"]).dtype, CategoricalDtypeType),
(pd.Categorical(["a", "b"]), CategoricalDtypeType),
(pd.CategoricalIndex(["a", "b"]).dtype, CategoricalDtypeType),
(pd.CategoricalIndex(["a", "b"]), CategoricalDtypeType),
(pd.DatetimeIndex([1, 2]), np.datetime64),
(pd.DatetimeIndex([1, 2]).dtype, np.datetime64),
("<M8[ns]", np.datetime64),
(pd.DatetimeIndex(["2000"], tz="Europe/London"), pd.Timestamp),
(pd.DatetimeIndex(["2000"], tz="Europe/London").dtype, pd.Timestamp),
("datetime64[ns, Europe/London]", pd.Timestamp),
(PeriodDtype(freq="D"), pd.Period),
("period[D]", pd.Period),
(IntervalDtype(), pd.Interval),
(None, type(None)),
(1, type(None)),
(1.2, type(None)),
(pd.DataFrame([1, 2]), type(None)), # composite dtype
],
)
def test__is_dtype_type(input_param, result):
assert com._is_dtype_type(input_param, lambda tipo: tipo == result)
def test_astype_nansafe_copy_false(any_int_numpy_dtype):
# GH#34457 use astype, not view
arr = np.array([1, 2, 3], dtype=any_int_numpy_dtype)
dtype = np.dtype("float64")
result = astype_array(arr, dtype, copy=False)
expected = np.array([1.0, 2.0, 3.0], dtype=dtype)
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("from_type", [np.datetime64, np.timedelta64])
def test_astype_object_preserves_datetime_na(from_type):
arr = np.array([from_type("NaT", "ns")])
result = astype_array(arr, dtype=np.dtype("object"))
assert isna(result)[0]
def test_validate_allhashable():
assert com.validate_all_hashable(1, "a") is None
with pytest.raises(TypeError, match="All elements must be hashable"):
com.validate_all_hashable([])
with pytest.raises(TypeError, match="list must be a hashable type"):
com.validate_all_hashable([], error_name="list")
def test_pandas_dtype_numpy_warning():
# GH#51523
if Version(np.__version__) < Version("2.3.0.dev0"):
ctx = tm.assert_produces_warning(
DeprecationWarning,
check_stacklevel=False,
match=(
"Converting `np.integer` or `np.signedinteger` to a dtype is deprecated"
),
)
else:
ctx = tm.external_error_raised(TypeError)
with ctx:
pandas_dtype(np.integer)
def test_pandas_dtype_ea_not_instance():
# GH 31356 GH 54592
with tm.assert_produces_warning(UserWarning):
assert pandas_dtype(CategoricalDtype) == CategoricalDtype()
def test_pandas_dtype_string_dtypes(string_storage):
with pd.option_context("future.infer_string", True):
# with the default string_storage setting
result = pandas_dtype("str")
assert result == pd.StringDtype(
"pyarrow" if HAS_PYARROW else "python", na_value=np.nan
)
with pd.option_context("future.infer_string", True):
# with the default string_storage setting
result = pandas_dtype(str)
assert result == pd.StringDtype(
"pyarrow" if HAS_PYARROW else "python", na_value=np.nan
)
with pd.option_context("future.infer_string", True):
with pd.option_context("string_storage", string_storage):
result = pandas_dtype("str")
assert result == pd.StringDtype(string_storage, na_value=np.nan)
with pd.option_context("future.infer_string", True):
with pd.option_context("string_storage", string_storage):
result = pandas_dtype(str)
assert result == pd.StringDtype(string_storage, na_value=np.nan)
with pd.option_context("future.infer_string", False):
with pd.option_context("string_storage", string_storage):
result = pandas_dtype("str")
assert result == np.dtype("U")
with pd.option_context("string_storage", string_storage):
result = pandas_dtype("string")
assert result == pd.StringDtype(string_storage, na_value=pd.NA)
def test_pandas_dtype_string_dtype_alias_with_storage():
with pytest.raises(TypeError, match="not understood"):
pandas_dtype("str[python]")
with pytest.raises(TypeError, match="not understood"):
pandas_dtype("str[pyarrow]")
result = pandas_dtype("string[python]")
assert result == pd.StringDtype("python", na_value=pd.NA)
if HAS_PYARROW:
result = pandas_dtype("string[pyarrow]")
assert result == pd.StringDtype("pyarrow", na_value=pd.NA)
else:
with pytest.raises(
ImportError, match="required for PyArrow backed StringArray"
):
pandas_dtype("string[pyarrow]")
|