1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Series,
date_range,
)
import pandas._testing as tm
class TestDataFrameNonuniqueIndexes:
def test_setattr_columns_vs_construct_with_columns(self):
# assignment
# GH 3687
arr = np.random.default_rng(2).standard_normal((3, 2))
idx = list(range(2))
df = DataFrame(arr, columns=["A", "A"])
df.columns = idx
expected = DataFrame(arr, columns=idx)
tm.assert_frame_equal(df, expected)
def test_setattr_columns_vs_construct_with_columns_datetimeindx(self):
idx = date_range("20130101", periods=4, freq="QE-NOV")
df = DataFrame(
[[1, 1, 1, 5], [1, 1, 2, 5], [2, 1, 3, 5]], columns=["a", "a", "a", "a"]
)
df.columns = idx
expected = DataFrame([[1, 1, 1, 5], [1, 1, 2, 5], [2, 1, 3, 5]], columns=idx)
tm.assert_frame_equal(df, expected)
def test_insert_with_duplicate_columns(self):
# insert
df = DataFrame(
[[1, 1, 1, 5], [1, 1, 2, 5], [2, 1, 3, 5]],
columns=["foo", "bar", "foo", "hello"],
)
df["string"] = "bah"
expected = DataFrame(
[[1, 1, 1, 5, "bah"], [1, 1, 2, 5, "bah"], [2, 1, 3, 5, "bah"]],
columns=["foo", "bar", "foo", "hello", "string"],
)
tm.assert_frame_equal(df, expected)
with pytest.raises(ValueError, match="Length of value"):
df.insert(0, "AnotherColumn", range(len(df.index) - 1))
# insert same dtype
df["foo2"] = 3
expected = DataFrame(
[[1, 1, 1, 5, "bah", 3], [1, 1, 2, 5, "bah", 3], [2, 1, 3, 5, "bah", 3]],
columns=["foo", "bar", "foo", "hello", "string", "foo2"],
)
tm.assert_frame_equal(df, expected)
# set (non-dup)
df["foo2"] = 4
expected = DataFrame(
[[1, 1, 1, 5, "bah", 4], [1, 1, 2, 5, "bah", 4], [2, 1, 3, 5, "bah", 4]],
columns=["foo", "bar", "foo", "hello", "string", "foo2"],
)
tm.assert_frame_equal(df, expected)
df["foo2"] = 3
# delete (non dup)
del df["bar"]
expected = DataFrame(
[[1, 1, 5, "bah", 3], [1, 2, 5, "bah", 3], [2, 3, 5, "bah", 3]],
columns=["foo", "foo", "hello", "string", "foo2"],
)
tm.assert_frame_equal(df, expected)
# try to delete again (its not consolidated)
del df["hello"]
expected = DataFrame(
[[1, 1, "bah", 3], [1, 2, "bah", 3], [2, 3, "bah", 3]],
columns=["foo", "foo", "string", "foo2"],
)
tm.assert_frame_equal(df, expected)
# consolidate
df = df._consolidate()
expected = DataFrame(
[[1, 1, "bah", 3], [1, 2, "bah", 3], [2, 3, "bah", 3]],
columns=["foo", "foo", "string", "foo2"],
)
tm.assert_frame_equal(df, expected)
# insert
df.insert(2, "new_col", 5.0)
expected = DataFrame(
[[1, 1, 5.0, "bah", 3], [1, 2, 5.0, "bah", 3], [2, 3, 5.0, "bah", 3]],
columns=["foo", "foo", "new_col", "string", "foo2"],
)
tm.assert_frame_equal(df, expected)
# insert a dup
with pytest.raises(ValueError, match="cannot insert"):
df.insert(2, "new_col", 4.0)
df.insert(2, "new_col", 4.0, allow_duplicates=True)
expected = DataFrame(
[
[1, 1, 4.0, 5.0, "bah", 3],
[1, 2, 4.0, 5.0, "bah", 3],
[2, 3, 4.0, 5.0, "bah", 3],
],
columns=["foo", "foo", "new_col", "new_col", "string", "foo2"],
)
tm.assert_frame_equal(df, expected)
# delete (dup)
del df["foo"]
expected = DataFrame(
[[4.0, 5.0, "bah", 3], [4.0, 5.0, "bah", 3], [4.0, 5.0, "bah", 3]],
columns=["new_col", "new_col", "string", "foo2"],
)
tm.assert_frame_equal(df, expected)
def test_dup_across_dtypes(self):
# dup across dtypes
df = DataFrame(
[[1, 1, 1.0, 5], [1, 1, 2.0, 5], [2, 1, 3.0, 5]],
columns=["foo", "bar", "foo", "hello"],
)
df["foo2"] = 7.0
expected = DataFrame(
[[1, 1, 1.0, 5, 7.0], [1, 1, 2.0, 5, 7.0], [2, 1, 3.0, 5, 7.0]],
columns=["foo", "bar", "foo", "hello", "foo2"],
)
tm.assert_frame_equal(df, expected)
result = df["foo"]
expected = DataFrame([[1, 1.0], [1, 2.0], [2, 3.0]], columns=["foo", "foo"])
tm.assert_frame_equal(result, expected)
# multiple replacements
df["foo"] = "string"
expected = DataFrame(
[
["string", 1, "string", 5, 7.0],
["string", 1, "string", 5, 7.0],
["string", 1, "string", 5, 7.0],
],
columns=["foo", "bar", "foo", "hello", "foo2"],
)
tm.assert_frame_equal(df, expected)
del df["foo"]
expected = DataFrame(
[[1, 5, 7.0], [1, 5, 7.0], [1, 5, 7.0]], columns=["bar", "hello", "foo2"]
)
tm.assert_frame_equal(df, expected)
def test_column_dups_indexes(self):
# check column dups with index equal and not equal to df's index
df = DataFrame(
np.random.default_rng(2).standard_normal((5, 3)),
index=["a", "b", "c", "d", "e"],
columns=["A", "B", "A"],
)
for index in [df.index, pd.Index(list("edcba"))]:
this_df = df.copy()
expected_ser = Series(index.values, index=this_df.index)
expected_df = DataFrame(
{"A": expected_ser, "B": this_df["B"]},
columns=["A", "B", "A"],
)
this_df["A"] = index
tm.assert_frame_equal(this_df, expected_df)
def test_changing_dtypes_with_duplicate_columns(self):
# multiple assignments that change dtypes
# the location indexer is a slice
# GH 6120
df = DataFrame(
np.random.default_rng(2).standard_normal((5, 2)), columns=["that", "that"]
)
expected = DataFrame(1.0, index=range(5), columns=["that", "that"])
df["that"] = 1.0
tm.assert_frame_equal(df, expected)
df = DataFrame(
np.random.default_rng(2).random((5, 2)), columns=["that", "that"]
)
expected = DataFrame(1, index=range(5), columns=["that", "that"])
df["that"] = 1
tm.assert_frame_equal(df, expected)
def test_dup_columns_comparisons(self):
# equality
df1 = DataFrame([[1, 2], [2, np.nan], [3, 4], [4, 4]], columns=["A", "B"])
df2 = DataFrame([[0, 1], [2, 4], [2, np.nan], [4, 5]], columns=["A", "A"])
# not-comparing like-labelled
msg = (
r"Can only compare identically-labeled \(both index and columns\) "
"DataFrame objects"
)
with pytest.raises(ValueError, match=msg):
df1 == df2
df1r = df1.reindex_like(df2)
result = df1r == df2
expected = DataFrame(
[[False, True], [True, False], [False, False], [True, False]],
columns=["A", "A"],
)
tm.assert_frame_equal(result, expected)
def test_mixed_column_selection(self):
# mixed column selection
# GH 5639
dfbool = DataFrame(
{
"one": Series([True, True, False], index=["a", "b", "c"]),
"two": Series([False, False, True, False], index=["a", "b", "c", "d"]),
"three": Series([False, True, True, True], index=["a", "b", "c", "d"]),
}
)
expected = pd.concat([dfbool["one"], dfbool["three"], dfbool["one"]], axis=1)
result = dfbool[["one", "three", "one"]]
tm.assert_frame_equal(result, expected)
def test_multi_axis_dups(self):
# multi-axis dups
# GH 6121
df = DataFrame(
np.arange(25.0).reshape(5, 5),
index=["a", "b", "c", "d", "e"],
columns=["A", "B", "C", "D", "E"],
)
z = df[["A", "C", "A"]].copy()
expected = z.loc[["a", "c", "a"]]
df = DataFrame(
np.arange(25.0).reshape(5, 5),
index=["a", "b", "c", "d", "e"],
columns=["A", "B", "C", "D", "E"],
)
z = df[["A", "C", "A"]]
result = z.loc[["a", "c", "a"]]
tm.assert_frame_equal(result, expected)
def test_columns_with_dups(self):
# GH 3468 related
# basic
df = DataFrame([[1, 2]], columns=["a", "a"])
df.columns = ["a", "a.1"]
expected = DataFrame([[1, 2]], columns=["a", "a.1"])
tm.assert_frame_equal(df, expected)
df = DataFrame([[1, 2, 3]], columns=["b", "a", "a"])
df.columns = ["b", "a", "a.1"]
expected = DataFrame([[1, 2, 3]], columns=["b", "a", "a.1"])
tm.assert_frame_equal(df, expected)
def test_columns_with_dup_index(self):
# with a dup index
df = DataFrame([[1, 2]], columns=["a", "a"])
df.columns = ["b", "b"]
expected = DataFrame([[1, 2]], columns=["b", "b"])
tm.assert_frame_equal(df, expected)
def test_multi_dtype(self):
# multi-dtype
df = DataFrame(
[[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]],
columns=["a", "a", "b", "b", "d", "c", "c"],
)
df.columns = list("ABCDEFG")
expected = DataFrame(
[[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]], columns=list("ABCDEFG")
)
tm.assert_frame_equal(df, expected)
def test_multi_dtype2(self):
df = DataFrame([[1, 2, "foo", "bar"]], columns=["a", "a", "a", "a"])
df.columns = ["a", "a.1", "a.2", "a.3"]
expected = DataFrame([[1, 2, "foo", "bar"]], columns=["a", "a.1", "a.2", "a.3"])
tm.assert_frame_equal(df, expected)
def test_dups_across_blocks(self, using_array_manager):
# dups across blocks
df_float = DataFrame(
np.random.default_rng(2).standard_normal((10, 3)), dtype="float64"
)
df_int = DataFrame(
np.random.default_rng(2).standard_normal((10, 3)).astype("int64")
)
df_bool = DataFrame(True, index=df_float.index, columns=df_float.columns)
df_object = DataFrame("foo", index=df_float.index, columns=df_float.columns)
df_dt = DataFrame(
pd.Timestamp("20010101"), index=df_float.index, columns=df_float.columns
)
df = pd.concat([df_float, df_int, df_bool, df_object, df_dt], axis=1)
if not using_array_manager:
assert len(df._mgr.blknos) == len(df.columns)
assert len(df._mgr.blklocs) == len(df.columns)
# testing iloc
for i in range(len(df.columns)):
df.iloc[:, i]
def test_dup_columns_across_dtype(self):
# dup columns across dtype GH 2079/2194
vals = [[1, -1, 2.0], [2, -2, 3.0]]
rs = DataFrame(vals, columns=["A", "A", "B"])
xp = DataFrame(vals)
xp.columns = ["A", "A", "B"]
tm.assert_frame_equal(rs, xp)
def test_set_value_by_index(self):
# See gh-12344
warn = None
msg = "will attempt to set the values inplace"
df = DataFrame(np.arange(9).reshape(3, 3).T)
df.columns = list("AAA")
expected = df.iloc[:, 2].copy()
with tm.assert_produces_warning(warn, match=msg):
df.iloc[:, 0] = 3
tm.assert_series_equal(df.iloc[:, 2], expected)
df = DataFrame(np.arange(9).reshape(3, 3).T)
df.columns = [2, float(2), str(2)]
expected = df.iloc[:, 1].copy()
with tm.assert_produces_warning(warn, match=msg):
df.iloc[:, 0] = 3
tm.assert_series_equal(df.iloc[:, 1], expected)
|