1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
|
import numpy as np
import pytest
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
)
import pandas._testing as tm
from pandas.core.indexing import IndexingError
# ----------------------------------------------------------------------------
# test indexing of Series with multi-level Index
# ----------------------------------------------------------------------------
@pytest.mark.parametrize(
"access_method",
[lambda s, x: s[:, x], lambda s, x: s.loc[:, x], lambda s, x: s.xs(x, level=1)],
)
@pytest.mark.parametrize(
"level1_value, expected",
[(0, Series([1], index=[0])), (1, Series([2, 3], index=[1, 2]))],
)
def test_series_getitem_multiindex(access_method, level1_value, expected):
# GH 6018
# series regression getitem with a multi-index
mi = MultiIndex.from_tuples([(0, 0), (1, 1), (2, 1)], names=["A", "B"])
ser = Series([1, 2, 3], index=mi)
expected.index.name = "A"
result = access_method(ser, level1_value)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("level0_value", ["D", "A"])
def test_series_getitem_duplicates_multiindex(level0_value):
# GH 5725 the 'A' happens to be a valid Timestamp so the doesn't raise
# the appropriate error, only in PY3 of course!
index = MultiIndex(
levels=[[level0_value, "B", "C"], [0, 26, 27, 37, 57, 67, 75, 82]],
codes=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]],
names=["tag", "day"],
)
arr = np.random.default_rng(2).standard_normal((len(index), 1))
df = DataFrame(arr, index=index, columns=["val"])
# confirm indexing on missing value raises KeyError
if level0_value != "A":
with pytest.raises(KeyError, match=r"^'A'$"):
df.val["A"]
with pytest.raises(KeyError, match=r"^'X'$"):
df.val["X"]
result = df.val[level0_value]
expected = Series(
arr.ravel()[0:3], name="val", index=Index([26, 37, 57], name="day")
)
tm.assert_series_equal(result, expected)
def test_series_getitem(multiindex_year_month_day_dataframe_random_data, indexer_sl):
s = multiindex_year_month_day_dataframe_random_data["A"]
expected = s.reindex(s.index[42:65])
expected.index = expected.index.droplevel(0).droplevel(0)
result = indexer_sl(s)[2000, 3]
tm.assert_series_equal(result, expected)
def test_series_getitem_returns_scalar(
multiindex_year_month_day_dataframe_random_data, indexer_sl
):
s = multiindex_year_month_day_dataframe_random_data["A"]
expected = s.iloc[49]
result = indexer_sl(s)[2000, 3, 10]
assert result == expected
@pytest.mark.parametrize(
"indexer,expected_error,expected_error_msg",
[
(lambda s: s.__getitem__((2000, 3, 4)), KeyError, r"^\(2000, 3, 4\)$"),
(lambda s: s[(2000, 3, 4)], KeyError, r"^\(2000, 3, 4\)$"),
(lambda s: s.loc[(2000, 3, 4)], KeyError, r"^\(2000, 3, 4\)$"),
(lambda s: s.loc[(2000, 3, 4, 5)], IndexingError, "Too many indexers"),
(lambda s: s.__getitem__(len(s)), KeyError, ""), # match should include len(s)
(lambda s: s[len(s)], KeyError, ""), # match should include len(s)
(
lambda s: s.iloc[len(s)],
IndexError,
"single positional indexer is out-of-bounds",
),
],
)
def test_series_getitem_indexing_errors(
multiindex_year_month_day_dataframe_random_data,
indexer,
expected_error,
expected_error_msg,
):
s = multiindex_year_month_day_dataframe_random_data["A"]
with pytest.raises(expected_error, match=expected_error_msg):
indexer(s)
def test_series_getitem_corner_generator(
multiindex_year_month_day_dataframe_random_data,
):
s = multiindex_year_month_day_dataframe_random_data["A"]
result = s[(x > 0 for x in s)]
expected = s[s > 0]
tm.assert_series_equal(result, expected)
# ----------------------------------------------------------------------------
# test indexing of DataFrame with multi-level Index
# ----------------------------------------------------------------------------
def test_getitem_simple(multiindex_dataframe_random_data):
df = multiindex_dataframe_random_data.T
expected = df.values[:, 0]
result = df["foo", "one"].values
tm.assert_almost_equal(result, expected)
@pytest.mark.parametrize(
"indexer,expected_error_msg",
[
(lambda df: df[("foo", "four")], r"^\('foo', 'four'\)$"),
(lambda df: df["foobar"], r"^'foobar'$"),
],
)
def test_frame_getitem_simple_key_error(
multiindex_dataframe_random_data, indexer, expected_error_msg
):
df = multiindex_dataframe_random_data.T
with pytest.raises(KeyError, match=expected_error_msg):
indexer(df)
def test_tuple_string_column_names():
# GH#50372
mi = MultiIndex.from_tuples([("a", "aa"), ("a", "ab"), ("b", "ba"), ("b", "bb")])
df = DataFrame([range(4), range(1, 5), range(2, 6)], columns=mi)
df["single_index"] = 0
df_flat = df.copy()
df_flat.columns = df_flat.columns.to_flat_index()
df_flat["new_single_index"] = 0
result = df_flat[[("a", "aa"), "new_single_index"]]
expected = DataFrame(
[[0, 0], [1, 0], [2, 0]], columns=Index([("a", "aa"), "new_single_index"])
)
tm.assert_frame_equal(result, expected)
def test_frame_getitem_multicolumn_empty_level():
df = DataFrame({"a": ["1", "2", "3"], "b": ["2", "3", "4"]})
df.columns = [
["level1 item1", "level1 item2"],
["", "level2 item2"],
["level3 item1", "level3 item2"],
]
result = df["level1 item1"]
expected = DataFrame(
[["1"], ["2"], ["3"]], index=df.index, columns=["level3 item1"]
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"indexer,expected_slice",
[
(lambda df: df["foo"], slice(3)),
(lambda df: df["bar"], slice(3, 5)),
(lambda df: df.loc[:, "bar"], slice(3, 5)),
],
)
def test_frame_getitem_toplevel(
multiindex_dataframe_random_data, indexer, expected_slice
):
df = multiindex_dataframe_random_data.T
expected = df.reindex(columns=df.columns[expected_slice])
expected.columns = expected.columns.droplevel(0)
result = indexer(df)
tm.assert_frame_equal(result, expected)
def test_frame_mixed_depth_get():
arrays = [
["a", "top", "top", "routine1", "routine1", "routine2"],
["", "OD", "OD", "result1", "result2", "result1"],
["", "wx", "wy", "", "", ""],
]
tuples = sorted(zip(*arrays))
index = MultiIndex.from_tuples(tuples)
df = DataFrame(np.random.default_rng(2).standard_normal((4, 6)), columns=index)
result = df["a"]
expected = df["a", "", ""].rename("a")
tm.assert_series_equal(result, expected)
result = df["routine1", "result1"]
expected = df["routine1", "result1", ""]
expected = expected.rename(("routine1", "result1"))
tm.assert_series_equal(result, expected)
def test_frame_getitem_nan_multiindex(nulls_fixture):
# GH#29751
# loc on a multiindex containing nan values
n = nulls_fixture # for code readability
cols = ["a", "b", "c"]
df = DataFrame(
[[11, n, 13], [21, n, 23], [31, n, 33], [41, n, 43]],
columns=cols,
).set_index(["a", "b"])
df["c"] = df["c"].astype("int64")
idx = (21, n)
result = df.loc[:idx]
expected = DataFrame([[11, n, 13], [21, n, 23]], columns=cols).set_index(["a", "b"])
expected["c"] = expected["c"].astype("int64")
tm.assert_frame_equal(result, expected)
result = df.loc[idx:]
expected = DataFrame(
[[21, n, 23], [31, n, 33], [41, n, 43]], columns=cols
).set_index(["a", "b"])
expected["c"] = expected["c"].astype("int64")
tm.assert_frame_equal(result, expected)
idx1, idx2 = (21, n), (31, n)
result = df.loc[idx1:idx2]
expected = DataFrame([[21, n, 23], [31, n, 33]], columns=cols).set_index(["a", "b"])
expected["c"] = expected["c"].astype("int64")
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"indexer,expected",
[
(
(["b"], ["bar", np.nan]),
(
DataFrame(
[[2, 3], [5, 6]],
columns=MultiIndex.from_tuples([("b", "bar"), ("b", np.nan)]),
dtype="int64",
)
),
),
(
(["a", "b"]),
(
DataFrame(
[[1, 2, 3], [4, 5, 6]],
columns=MultiIndex.from_tuples(
[("a", "foo"), ("b", "bar"), ("b", np.nan)]
),
dtype="int64",
)
),
),
(
(["b"]),
(
DataFrame(
[[2, 3], [5, 6]],
columns=MultiIndex.from_tuples([("b", "bar"), ("b", np.nan)]),
dtype="int64",
)
),
),
(
(["b"], ["bar"]),
(
DataFrame(
[[2], [5]],
columns=MultiIndex.from_tuples([("b", "bar")]),
dtype="int64",
)
),
),
(
(["b"], [np.nan]),
(
DataFrame(
[[3], [6]],
columns=MultiIndex(
codes=[[1], [-1]], levels=[["a", "b"], ["bar", "foo"]]
),
dtype="int64",
)
),
),
(("b", np.nan), Series([3, 6], dtype="int64", name=("b", np.nan))),
],
)
def test_frame_getitem_nan_cols_multiindex(
indexer,
expected,
nulls_fixture,
):
# Slicing MultiIndex including levels with nan values, for more information
# see GH#25154
df = DataFrame(
[[1, 2, 3], [4, 5, 6]],
columns=MultiIndex.from_tuples(
[("a", "foo"), ("b", "bar"), ("b", nulls_fixture)]
),
dtype="int64",
)
result = df.loc[:, indexer]
tm.assert_equal(result, expected)
# ----------------------------------------------------------------------------
# test indexing of DataFrame with multi-level Index with duplicates
# ----------------------------------------------------------------------------
@pytest.fixture
def dataframe_with_duplicate_index():
"""Fixture for DataFrame used in tests for gh-4145 and gh-4146"""
data = [["a", "d", "e", "c", "f", "b"], [1, 4, 5, 3, 6, 2], [1, 4, 5, 3, 6, 2]]
index = ["h1", "h3", "h5"]
columns = MultiIndex(
levels=[["A", "B"], ["A1", "A2", "B1", "B2"]],
codes=[[0, 0, 0, 1, 1, 1], [0, 3, 3, 0, 1, 2]],
names=["main", "sub"],
)
return DataFrame(data, index=index, columns=columns)
@pytest.mark.parametrize(
"indexer", [lambda df: df[("A", "A1")], lambda df: df.loc[:, ("A", "A1")]]
)
def test_frame_mi_access(dataframe_with_duplicate_index, indexer):
# GH 4145
df = dataframe_with_duplicate_index
index = Index(["h1", "h3", "h5"])
columns = MultiIndex.from_tuples([("A", "A1")], names=["main", "sub"])
expected = DataFrame([["a", 1, 1]], index=columns, columns=index).T
result = indexer(df)
tm.assert_frame_equal(result, expected)
def test_frame_mi_access_returns_series(dataframe_with_duplicate_index):
# GH 4146, not returning a block manager when selecting a unique index
# from a duplicate index
# as of 4879, this returns a Series (which is similar to what happens
# with a non-unique)
df = dataframe_with_duplicate_index
expected = Series(["a", 1, 1], index=["h1", "h3", "h5"], name="A1")
result = df["A"]["A1"]
tm.assert_series_equal(result, expected)
def test_frame_mi_access_returns_frame(dataframe_with_duplicate_index):
# selecting a non_unique from the 2nd level
df = dataframe_with_duplicate_index
expected = DataFrame(
[["d", 4, 4], ["e", 5, 5]],
index=Index(["B2", "B2"], name="sub"),
columns=["h1", "h3", "h5"],
).T
result = df["A"]["B2"]
tm.assert_frame_equal(result, expected)
def test_frame_mi_empty_slice():
# GH 15454
df = DataFrame(0, index=range(2), columns=MultiIndex.from_product([[1], [2]]))
result = df[[]]
expected = DataFrame(
index=[0, 1], columns=MultiIndex(levels=[[1], [2]], codes=[[], []])
)
tm.assert_frame_equal(result, expected)
def test_loc_empty_multiindex():
# GH#36936
arrays = [["a", "a", "b", "a"], ["a", "a", "b", "b"]]
index = MultiIndex.from_arrays(arrays, names=("idx1", "idx2"))
df = DataFrame([1, 2, 3, 4], index=index, columns=["value"])
# loc on empty multiindex == loc with False mask
empty_multiindex = df.loc[df.loc[:, "value"] == 0, :].index
result = df.loc[empty_multiindex, :]
expected = df.loc[[False] * len(df.index), :]
tm.assert_frame_equal(result, expected)
# replacing value with loc on empty multiindex
df.loc[df.loc[df.loc[:, "value"] == 0].index, "value"] = 5
result = df
expected = DataFrame([1, 2, 3, 4], index=index, columns=["value"])
tm.assert_frame_equal(result, expected)
|