1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
import io
import numpy as np
import pytest
import pandas.util._test_decorators as td
from pandas import (
NA,
DataFrame,
read_csv,
)
td.versioned_importorskip("jinja2")
def bar_grad(a=None, b=None, c=None, d=None):
"""Used in multiple tests to simplify formatting of expected result"""
ret = [("width", "10em")]
if all(x is None for x in [a, b, c, d]):
return ret
return ret + [
(
"background",
f"linear-gradient(90deg,{','.join([x for x in [a, b, c, d] if x])})",
)
]
def no_bar():
return bar_grad()
def bar_to(x, color="#d65f5f"):
return bar_grad(f" {color} {x:.1f}%", f" transparent {x:.1f}%")
def bar_from_to(x, y, color="#d65f5f"):
return bar_grad(
f" transparent {x:.1f}%",
f" {color} {x:.1f}%",
f" {color} {y:.1f}%",
f" transparent {y:.1f}%",
)
@pytest.fixture
def df_pos():
return DataFrame([[1], [2], [3]])
@pytest.fixture
def df_neg():
return DataFrame([[-1], [-2], [-3]])
@pytest.fixture
def df_mix():
return DataFrame([[-3], [1], [2]])
@pytest.mark.parametrize(
"align, exp",
[
("left", [no_bar(), bar_to(50), bar_to(100)]),
("right", [bar_to(100), bar_from_to(50, 100), no_bar()]),
("mid", [bar_to(33.33), bar_to(66.66), bar_to(100)]),
("zero", [bar_from_to(50, 66.7), bar_from_to(50, 83.3), bar_from_to(50, 100)]),
("mean", [bar_to(50), no_bar(), bar_from_to(50, 100)]),
(2.0, [bar_to(50), no_bar(), bar_from_to(50, 100)]),
(np.median, [bar_to(50), no_bar(), bar_from_to(50, 100)]),
],
)
def test_align_positive_cases(df_pos, align, exp):
# test different align cases for all positive values
result = df_pos.style.bar(align=align)._compute().ctx
expected = {(0, 0): exp[0], (1, 0): exp[1], (2, 0): exp[2]}
assert result == expected
@pytest.mark.parametrize(
"align, exp",
[
("left", [bar_to(100), bar_to(50), no_bar()]),
("right", [no_bar(), bar_from_to(50, 100), bar_to(100)]),
("mid", [bar_from_to(66.66, 100), bar_from_to(33.33, 100), bar_to(100)]),
("zero", [bar_from_to(33.33, 50), bar_from_to(16.66, 50), bar_to(50)]),
("mean", [bar_from_to(50, 100), no_bar(), bar_to(50)]),
(-2.0, [bar_from_to(50, 100), no_bar(), bar_to(50)]),
(np.median, [bar_from_to(50, 100), no_bar(), bar_to(50)]),
],
)
def test_align_negative_cases(df_neg, align, exp):
# test different align cases for all negative values
result = df_neg.style.bar(align=align)._compute().ctx
expected = {(0, 0): exp[0], (1, 0): exp[1], (2, 0): exp[2]}
assert result == expected
@pytest.mark.parametrize(
"align, exp",
[
("left", [no_bar(), bar_to(80), bar_to(100)]),
("right", [bar_to(100), bar_from_to(80, 100), no_bar()]),
("mid", [bar_to(60), bar_from_to(60, 80), bar_from_to(60, 100)]),
("zero", [bar_to(50), bar_from_to(50, 66.66), bar_from_to(50, 83.33)]),
("mean", [bar_to(50), bar_from_to(50, 66.66), bar_from_to(50, 83.33)]),
(-0.0, [bar_to(50), bar_from_to(50, 66.66), bar_from_to(50, 83.33)]),
(np.nanmedian, [bar_to(50), no_bar(), bar_from_to(50, 62.5)]),
],
)
@pytest.mark.parametrize("nans", [True, False])
def test_align_mixed_cases(df_mix, align, exp, nans):
# test different align cases for mixed positive and negative values
# also test no impact of NaNs and no_bar
expected = {(0, 0): exp[0], (1, 0): exp[1], (2, 0): exp[2]}
if nans:
df_mix.loc[3, :] = np.nan
expected.update({(3, 0): no_bar()})
result = df_mix.style.bar(align=align)._compute().ctx
assert result == expected
@pytest.mark.parametrize(
"align, exp",
[
(
"left",
{
"index": [[no_bar(), no_bar()], [bar_to(100), bar_to(100)]],
"columns": [[no_bar(), bar_to(100)], [no_bar(), bar_to(100)]],
"none": [[no_bar(), bar_to(33.33)], [bar_to(66.66), bar_to(100)]],
},
),
(
"mid",
{
"index": [[bar_to(33.33), bar_to(50)], [bar_to(100), bar_to(100)]],
"columns": [[bar_to(50), bar_to(100)], [bar_to(75), bar_to(100)]],
"none": [[bar_to(25), bar_to(50)], [bar_to(75), bar_to(100)]],
},
),
(
"zero",
{
"index": [
[bar_from_to(50, 66.66), bar_from_to(50, 75)],
[bar_from_to(50, 100), bar_from_to(50, 100)],
],
"columns": [
[bar_from_to(50, 75), bar_from_to(50, 100)],
[bar_from_to(50, 87.5), bar_from_to(50, 100)],
],
"none": [
[bar_from_to(50, 62.5), bar_from_to(50, 75)],
[bar_from_to(50, 87.5), bar_from_to(50, 100)],
],
},
),
(
2,
{
"index": [
[bar_to(50), no_bar()],
[bar_from_to(50, 100), bar_from_to(50, 100)],
],
"columns": [
[bar_to(50), no_bar()],
[bar_from_to(50, 75), bar_from_to(50, 100)],
],
"none": [
[bar_from_to(25, 50), no_bar()],
[bar_from_to(50, 75), bar_from_to(50, 100)],
],
},
),
],
)
@pytest.mark.parametrize("axis", ["index", "columns", "none"])
def test_align_axis(align, exp, axis):
# test all axis combinations with positive values and different aligns
data = DataFrame([[1, 2], [3, 4]])
result = (
data.style.bar(align=align, axis=None if axis == "none" else axis)
._compute()
.ctx
)
expected = {
(0, 0): exp[axis][0][0],
(0, 1): exp[axis][0][1],
(1, 0): exp[axis][1][0],
(1, 1): exp[axis][1][1],
}
assert result == expected
@pytest.mark.parametrize(
"values, vmin, vmax",
[
("positive", 1.5, 2.5),
("negative", -2.5, -1.5),
("mixed", -2.5, 1.5),
],
)
@pytest.mark.parametrize("nullify", [None, "vmin", "vmax"]) # test min/max separately
@pytest.mark.parametrize("align", ["left", "right", "zero", "mid"])
def test_vmin_vmax_clipping(df_pos, df_neg, df_mix, values, vmin, vmax, nullify, align):
# test that clipping occurs if any vmin > data_values or vmax < data_values
if align == "mid": # mid acts as left or right in each case
if values == "positive":
align = "left"
elif values == "negative":
align = "right"
df = {"positive": df_pos, "negative": df_neg, "mixed": df_mix}[values]
vmin = None if nullify == "vmin" else vmin
vmax = None if nullify == "vmax" else vmax
clip_df = df.where(df <= (vmax if vmax else 999), other=vmax)
clip_df = clip_df.where(clip_df >= (vmin if vmin else -999), other=vmin)
result = (
df.style.bar(align=align, vmin=vmin, vmax=vmax, color=["red", "green"])
._compute()
.ctx
)
expected = clip_df.style.bar(align=align, color=["red", "green"])._compute().ctx
assert result == expected
@pytest.mark.parametrize(
"values, vmin, vmax",
[
("positive", 0.5, 4.5),
("negative", -4.5, -0.5),
("mixed", -4.5, 4.5),
],
)
@pytest.mark.parametrize("nullify", [None, "vmin", "vmax"]) # test min/max separately
@pytest.mark.parametrize("align", ["left", "right", "zero", "mid"])
def test_vmin_vmax_widening(df_pos, df_neg, df_mix, values, vmin, vmax, nullify, align):
# test that widening occurs if any vmax > data_values or vmin < data_values
if align == "mid": # mid acts as left or right in each case
if values == "positive":
align = "left"
elif values == "negative":
align = "right"
df = {"positive": df_pos, "negative": df_neg, "mixed": df_mix}[values]
vmin = None if nullify == "vmin" else vmin
vmax = None if nullify == "vmax" else vmax
expand_df = df.copy()
expand_df.loc[3, :], expand_df.loc[4, :] = vmin, vmax
result = (
df.style.bar(align=align, vmin=vmin, vmax=vmax, color=["red", "green"])
._compute()
.ctx
)
expected = expand_df.style.bar(align=align, color=["red", "green"])._compute().ctx
assert result.items() <= expected.items()
def test_numerics():
# test data is pre-selected for numeric values
data = DataFrame([[1, "a"], [2, "b"]])
result = data.style.bar()._compute().ctx
assert (0, 1) not in result
assert (1, 1) not in result
@pytest.mark.parametrize(
"align, exp",
[
("left", [no_bar(), bar_to(100, "green")]),
("right", [bar_to(100, "red"), no_bar()]),
("mid", [bar_to(25, "red"), bar_from_to(25, 100, "green")]),
("zero", [bar_from_to(33.33, 50, "red"), bar_from_to(50, 100, "green")]),
],
)
def test_colors_mixed(align, exp):
data = DataFrame([[-1], [3]])
result = data.style.bar(align=align, color=["red", "green"])._compute().ctx
assert result == {(0, 0): exp[0], (1, 0): exp[1]}
def test_bar_align_height():
# test when keyword height is used 'no-repeat center' and 'background-size' present
data = DataFrame([[1], [2]])
result = data.style.bar(align="left", height=50)._compute().ctx
bg_s = "linear-gradient(90deg, #d65f5f 100.0%, transparent 100.0%) no-repeat center"
expected = {
(0, 0): [("width", "10em")],
(1, 0): [
("width", "10em"),
("background", bg_s),
("background-size", "100% 50.0%"),
],
}
assert result == expected
def test_bar_value_error_raises():
df = DataFrame({"A": [-100, -60, -30, -20]})
msg = "`align` should be in {'left', 'right', 'mid', 'mean', 'zero'} or"
with pytest.raises(ValueError, match=msg):
df.style.bar(align="poorly", color=["#d65f5f", "#5fba7d"]).to_html()
msg = r"`width` must be a value in \[0, 100\]"
with pytest.raises(ValueError, match=msg):
df.style.bar(width=200).to_html()
msg = r"`height` must be a value in \[0, 100\]"
with pytest.raises(ValueError, match=msg):
df.style.bar(height=200).to_html()
def test_bar_color_and_cmap_error_raises():
df = DataFrame({"A": [1, 2, 3, 4]})
msg = "`color` and `cmap` cannot both be given"
# Test that providing both color and cmap raises a ValueError
with pytest.raises(ValueError, match=msg):
df.style.bar(color="#d65f5f", cmap="viridis").to_html()
def test_bar_invalid_color_type_error_raises():
df = DataFrame({"A": [1, 2, 3, 4]})
msg = (
r"`color` must be string or list or tuple of 2 strings,"
r"\(eg: color=\['#d65f5f', '#5fba7d'\]\)"
)
# Test that providing an invalid color type raises a ValueError
with pytest.raises(ValueError, match=msg):
df.style.bar(color=123).to_html()
# Test that providing a color list with more than two elements raises a ValueError
with pytest.raises(ValueError, match=msg):
df.style.bar(color=["#d65f5f", "#5fba7d", "#abcdef"]).to_html()
def test_styler_bar_with_NA_values():
df1 = DataFrame({"A": [1, 2, NA, 4]})
df2 = DataFrame([[NA, NA], [NA, NA]])
expected_substring = "style type="
html_output1 = df1.style.bar(subset="A").to_html()
html_output2 = df2.style.bar(align="left", axis=None).to_html()
assert expected_substring in html_output1
assert expected_substring in html_output2
def test_style_bar_with_pyarrow_NA_values():
td.versioned_importorskip("pyarrow")
data = """name,age,test1,test2,teacher
Adam,15,95.0,80,Ashby
Bob,16,81.0,82,Ashby
Dave,16,89.0,84,Jones
Fred,15,,88,Jones"""
df = read_csv(io.StringIO(data), dtype_backend="pyarrow")
expected_substring = "style type="
html_output = df.style.bar(subset="test1").to_html()
assert expected_substring in html_output
|