1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
import datetime
from io import BytesIO
import re
import numpy as np
import pytest
from pandas import (
CategoricalIndex,
DataFrame,
HDFStore,
Index,
MultiIndex,
_testing as tm,
date_range,
read_hdf,
)
from pandas.tests.io.pytables.common import ensure_clean_store
from pandas.io.pytables import (
Term,
_maybe_adjust_name,
)
pytestmark = [pytest.mark.single_cpu]
def test_pass_spec_to_storer(setup_path):
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
with ensure_clean_store(setup_path) as store:
store.put("df", df)
msg = (
"cannot pass a column specification when reading a Fixed format "
"store. this store must be selected in its entirety"
)
with pytest.raises(TypeError, match=msg):
store.select("df", columns=["A"])
msg = (
"cannot pass a where specification when reading from a Fixed "
"format store. this store must be selected in its entirety"
)
with pytest.raises(TypeError, match=msg):
store.select("df", where=[("columns=A")])
def test_table_index_incompatible_dtypes(setup_path):
df1 = DataFrame({"a": [1, 2, 3]})
df2 = DataFrame({"a": [4, 5, 6]}, index=date_range("1/1/2000", periods=3))
with ensure_clean_store(setup_path) as store:
store.put("frame", df1, format="table")
msg = re.escape("incompatible kind in col [integer - datetime64[ns]]")
with pytest.raises(TypeError, match=msg):
store.put("frame", df2, format="table", append=True)
def test_unimplemented_dtypes_table_columns(setup_path):
with ensure_clean_store(setup_path) as store:
dtypes = [("date", datetime.date(2001, 1, 2))]
# currently not supported dtypes ####
for n, f in dtypes:
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
df[n] = f
msg = re.escape(f"[{n}] is not implemented as a table column")
with pytest.raises(TypeError, match=msg):
store.append(f"df1_{n}", df)
# frame
df = DataFrame(
1.1 * np.arange(120).reshape((30, 4)),
columns=Index(list("ABCD"), dtype=object),
index=Index([f"i-{i}" for i in range(30)], dtype=object),
)
df["obj1"] = "foo"
df["obj2"] = "bar"
df["datetime1"] = datetime.date(2001, 1, 2)
df = df._consolidate()
with ensure_clean_store(setup_path) as store:
# this fails because we have a date in the object block......
msg = "|".join(
[
re.escape(
"Cannot serialize the column [datetime1]\nbecause its data "
"contents are not [string] but [date] object dtype"
),
re.escape("[date] is not implemented as a table column"),
]
)
with pytest.raises(TypeError, match=msg):
store.append("df_unimplemented", df)
def test_invalid_terms(tmp_path, setup_path):
with ensure_clean_store(setup_path) as store:
df = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=Index(list("ABCD"), dtype=object),
index=date_range("2000-01-01", periods=10, freq="B"),
)
df["string"] = "foo"
df.loc[df.index[0:4], "string"] = "bar"
store.put("df", df, format="table")
# some invalid terms
msg = re.escape("__init__() missing 1 required positional argument: 'where'")
with pytest.raises(TypeError, match=msg):
Term()
# more invalid
msg = re.escape(
"cannot process expression [df.index[3]], "
"[2000-01-06 00:00:00] is not a valid condition"
)
with pytest.raises(ValueError, match=msg):
store.select("df", "df.index[3]")
msg = "invalid syntax"
with pytest.raises(SyntaxError, match=msg):
store.select("df", "index>")
# from the docs
path = tmp_path / setup_path
dfq = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=list("ABCD"),
index=date_range("20130101", periods=10),
)
dfq.to_hdf(path, key="dfq", format="table", data_columns=True)
# check ok
read_hdf(path, "dfq", where="index>Timestamp('20130104') & columns=['A', 'B']")
read_hdf(path, "dfq", where="A>0 or C>0")
# catch the invalid reference
path = tmp_path / setup_path
dfq = DataFrame(
np.random.default_rng(2).standard_normal((10, 4)),
columns=list("ABCD"),
index=date_range("20130101", periods=10),
)
dfq.to_hdf(path, key="dfq", format="table")
msg = (
r"The passed where expression: A>0 or C>0\n\s*"
r"contains an invalid variable reference\n\s*"
r"all of the variable references must be a reference to\n\s*"
r"an axis \(e.g. 'index' or 'columns'\), or a data_column\n\s*"
r"The currently defined references are: index,columns\n"
)
with pytest.raises(ValueError, match=msg):
read_hdf(path, "dfq", where="A>0 or C>0")
def test_append_with_diff_col_name_types_raises_value_error(setup_path):
df = DataFrame(np.random.default_rng(2).standard_normal((10, 1)))
df2 = DataFrame({"a": np.random.default_rng(2).standard_normal(10)})
df3 = DataFrame({(1, 2): np.random.default_rng(2).standard_normal(10)})
df4 = DataFrame({("1", 2): np.random.default_rng(2).standard_normal(10)})
df5 = DataFrame({("1", 2, object): np.random.default_rng(2).standard_normal(10)})
with ensure_clean_store(setup_path) as store:
name = "df_diff_valerror"
store.append(name, df)
for d in (df2, df3, df4, df5):
msg = re.escape(
"cannot match existing table structure for [0] on appending data"
)
with pytest.raises(ValueError, match=msg):
store.append(name, d)
def test_invalid_complib(setup_path):
df = DataFrame(
np.random.default_rng(2).random((4, 5)),
index=list("abcd"),
columns=list("ABCDE"),
)
with tm.ensure_clean(setup_path) as path:
msg = r"complib only supports \[.*\] compression."
with pytest.raises(ValueError, match=msg):
df.to_hdf(path, key="df", complib="foolib")
@pytest.mark.parametrize(
"idx",
[
date_range("2019", freq="D", periods=3, tz="UTC"),
CategoricalIndex(list("abc")),
],
)
def test_to_hdf_multiindex_extension_dtype(idx, tmp_path, setup_path):
# GH 7775
mi = MultiIndex.from_arrays([idx, idx])
df = DataFrame(0, index=mi, columns=["a"])
path = tmp_path / setup_path
with pytest.raises(NotImplementedError, match="Saving a MultiIndex"):
df.to_hdf(path, key="df")
def test_unsuppored_hdf_file_error(datapath):
# GH 9539
data_path = datapath("io", "data", "legacy_hdf/incompatible_dataset.h5")
message = (
r"Dataset\(s\) incompatible with Pandas data types, "
"not table, or no datasets found in HDF5 file."
)
with pytest.raises(ValueError, match=message):
read_hdf(data_path)
def test_read_hdf_errors(setup_path, tmp_path):
df = DataFrame(
np.random.default_rng(2).random((4, 5)),
index=list("abcd"),
columns=list("ABCDE"),
)
path = tmp_path / setup_path
msg = r"File [\S]* does not exist"
with pytest.raises(OSError, match=msg):
read_hdf(path, "key")
df.to_hdf(path, key="df")
store = HDFStore(path, mode="r")
store.close()
msg = "The HDFStore must be open for reading."
with pytest.raises(OSError, match=msg):
read_hdf(store, "df")
def test_read_hdf_generic_buffer_errors():
msg = "Support for generic buffers has not been implemented."
with pytest.raises(NotImplementedError, match=msg):
read_hdf(BytesIO(b""), "df")
@pytest.mark.parametrize("bad_version", [(1, 2), (1,), [], "12", "123"])
def test_maybe_adjust_name_bad_version_raises(bad_version):
msg = "Version is incorrect, expected sequence of 3 integers"
with pytest.raises(ValueError, match=msg):
_maybe_adjust_name("values_block_0", version=bad_version)
|