1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
|
from itertools import chain
import operator
import numpy as np
import pytest
from pandas._libs.algos import (
Infinity,
NegInfinity,
)
import pandas.util._test_decorators as td
from pandas import (
NA,
NaT,
Series,
Timestamp,
date_range,
)
import pandas._testing as tm
from pandas.api.types import CategoricalDtype
@pytest.fixture
def ser():
return Series([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3])
@pytest.fixture(
params=[
["average", np.array([1.5, 5.5, 7.0, 3.5, np.nan, 3.5, 1.5, 8.0, np.nan, 5.5])],
["min", np.array([1, 5, 7, 3, np.nan, 3, 1, 8, np.nan, 5])],
["max", np.array([2, 6, 7, 4, np.nan, 4, 2, 8, np.nan, 6])],
["first", np.array([1, 5, 7, 3, np.nan, 4, 2, 8, np.nan, 6])],
["dense", np.array([1, 3, 4, 2, np.nan, 2, 1, 5, np.nan, 3])],
],
ids=lambda x: x[0],
)
def results(request):
return request.param
@pytest.fixture(
params=[
"object",
"float64",
"int64",
"Float64",
"Int64",
pytest.param("float64[pyarrow]", marks=td.skip_if_no("pyarrow")),
pytest.param("int64[pyarrow]", marks=td.skip_if_no("pyarrow")),
pytest.param("string[pyarrow]", marks=td.skip_if_no("pyarrow")),
"string[python]",
"str",
]
)
def dtype(request):
return request.param
def expected_dtype(dtype, method, pct=False):
exp_dtype = "float64"
# elif dtype in ["Int64", "Float64", "string[pyarrow]", "string[python]"]:
if dtype in ["string[pyarrow]"]:
exp_dtype = "Float64"
elif dtype in ["float64[pyarrow]", "int64[pyarrow]"]:
if method == "average" or pct:
exp_dtype = "double[pyarrow]"
else:
exp_dtype = "uint64[pyarrow]"
return exp_dtype
class TestSeriesRank:
def test_rank(self, datetime_series):
sp_stats = td.versioned_importorskip("scipy.stats")
datetime_series[::2] = np.nan
datetime_series[:10:3] = 4.0
ranks = datetime_series.rank()
oranks = datetime_series.astype("O").rank()
tm.assert_series_equal(ranks, oranks)
mask = np.isnan(datetime_series)
filled = datetime_series.fillna(np.inf)
# rankdata returns a ndarray
exp = Series(sp_stats.rankdata(filled), index=filled.index, name="ts")
exp[mask] = np.nan
tm.assert_series_equal(ranks, exp)
iseries = Series(np.arange(5).repeat(2))
iranks = iseries.rank()
exp = iseries.astype(float).rank()
tm.assert_series_equal(iranks, exp)
iseries = Series(np.arange(5)) + 1.0
exp = iseries / 5.0
iranks = iseries.rank(pct=True)
tm.assert_series_equal(iranks, exp)
iseries = Series(np.repeat(1, 100))
exp = Series(np.repeat(0.505, 100))
iranks = iseries.rank(pct=True)
tm.assert_series_equal(iranks, exp)
# Explicit cast to float to avoid implicit cast when setting nan
iseries = iseries.astype("float")
iseries[1] = np.nan
exp = Series(np.repeat(50.0 / 99.0, 100))
exp[1] = np.nan
iranks = iseries.rank(pct=True)
tm.assert_series_equal(iranks, exp)
iseries = Series(np.arange(5)) + 1.0
iseries[4] = np.nan
exp = iseries / 4.0
iranks = iseries.rank(pct=True)
tm.assert_series_equal(iranks, exp)
iseries = Series(np.repeat(np.nan, 100))
exp = iseries.copy()
iranks = iseries.rank(pct=True)
tm.assert_series_equal(iranks, exp)
# Explicit cast to float to avoid implicit cast when setting nan
iseries = Series(np.arange(5), dtype="float") + 1
iseries[4] = np.nan
exp = iseries / 4.0
iranks = iseries.rank(pct=True)
tm.assert_series_equal(iranks, exp)
rng = date_range("1/1/1990", periods=5)
# Explicit cast to float to avoid implicit cast when setting nan
iseries = Series(np.arange(5), rng, dtype="float") + 1
iseries.iloc[4] = np.nan
exp = iseries / 4.0
iranks = iseries.rank(pct=True)
tm.assert_series_equal(iranks, exp)
iseries = Series([1e-50, 1e-100, 1e-20, 1e-2, 1e-20 + 1e-30, 1e-1])
exp = Series([2, 1, 3, 5, 4, 6.0])
iranks = iseries.rank()
tm.assert_series_equal(iranks, exp)
# GH 5968
iseries = Series(["3 day", "1 day 10m", "-2 day", NaT], dtype="m8[ns]")
exp = Series([3, 2, 1, np.nan])
iranks = iseries.rank()
tm.assert_series_equal(iranks, exp)
values = np.array(
[-50, -1, -1e-20, -1e-25, -1e-50, 0, 1e-40, 1e-20, 1e-10, 2, 40],
dtype="float64",
)
random_order = np.random.default_rng(2).permutation(len(values))
iseries = Series(values[random_order])
exp = Series(random_order + 1.0, dtype="float64")
iranks = iseries.rank()
tm.assert_series_equal(iranks, exp)
def test_rank_categorical(self):
# GH issue #15420 rank incorrectly orders ordered categories
# Test ascending/descending ranking for ordered categoricals
exp = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
exp_desc = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0])
ordered = Series(
["first", "second", "third", "fourth", "fifth", "sixth"]
).astype(
CategoricalDtype(
categories=["first", "second", "third", "fourth", "fifth", "sixth"],
ordered=True,
)
)
tm.assert_series_equal(ordered.rank(), exp)
tm.assert_series_equal(ordered.rank(ascending=False), exp_desc)
# Unordered categoricals should be ranked as objects
unordered = Series(
["first", "second", "third", "fourth", "fifth", "sixth"]
).astype(
CategoricalDtype(
categories=["first", "second", "third", "fourth", "fifth", "sixth"],
ordered=False,
)
)
exp_unordered = Series([2.0, 4.0, 6.0, 3.0, 1.0, 5.0])
res = unordered.rank()
tm.assert_series_equal(res, exp_unordered)
unordered1 = Series([1, 2, 3, 4, 5, 6]).astype(
CategoricalDtype([1, 2, 3, 4, 5, 6], False)
)
exp_unordered1 = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0])
res1 = unordered1.rank()
tm.assert_series_equal(res1, exp_unordered1)
# Test na_option for rank data
na_ser = Series(
["first", "second", "third", "fourth", "fifth", "sixth", np.nan]
).astype(
CategoricalDtype(
["first", "second", "third", "fourth", "fifth", "sixth", "seventh"],
True,
)
)
exp_top = Series([2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 1.0])
exp_bot = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0])
exp_keep = Series([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, np.nan])
tm.assert_series_equal(na_ser.rank(na_option="top"), exp_top)
tm.assert_series_equal(na_ser.rank(na_option="bottom"), exp_bot)
tm.assert_series_equal(na_ser.rank(na_option="keep"), exp_keep)
# Test na_option for rank data with ascending False
exp_top = Series([7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0])
exp_bot = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0, 7.0])
exp_keep = Series([6.0, 5.0, 4.0, 3.0, 2.0, 1.0, np.nan])
tm.assert_series_equal(na_ser.rank(na_option="top", ascending=False), exp_top)
tm.assert_series_equal(
na_ser.rank(na_option="bottom", ascending=False), exp_bot
)
tm.assert_series_equal(na_ser.rank(na_option="keep", ascending=False), exp_keep)
# Test invalid values for na_option
msg = "na_option must be one of 'keep', 'top', or 'bottom'"
with pytest.raises(ValueError, match=msg):
na_ser.rank(na_option="bad", ascending=False)
# invalid type
with pytest.raises(ValueError, match=msg):
na_ser.rank(na_option=True, ascending=False)
# Test with pct=True
na_ser = Series(["first", "second", "third", "fourth", np.nan]).astype(
CategoricalDtype(["first", "second", "third", "fourth"], True)
)
exp_top = Series([0.4, 0.6, 0.8, 1.0, 0.2])
exp_bot = Series([0.2, 0.4, 0.6, 0.8, 1.0])
exp_keep = Series([0.25, 0.5, 0.75, 1.0, np.nan])
tm.assert_series_equal(na_ser.rank(na_option="top", pct=True), exp_top)
tm.assert_series_equal(na_ser.rank(na_option="bottom", pct=True), exp_bot)
tm.assert_series_equal(na_ser.rank(na_option="keep", pct=True), exp_keep)
def test_rank_signature(self):
s = Series([0, 1])
s.rank(method="average")
msg = "No axis named average for object type Series"
with pytest.raises(ValueError, match=msg):
s.rank("average")
def test_rank_tie_methods(self, ser, results, dtype, using_infer_string):
method, exp = results
if (
dtype == "int64"
or dtype == "Int64"
or (not using_infer_string and dtype == "str")
):
pytest.skip("int64/str does not support NaN")
ser = ser if dtype is None else ser.astype(dtype)
result = ser.rank(method=method)
tm.assert_series_equal(result, Series(exp, dtype=expected_dtype(dtype, method)))
@pytest.mark.parametrize("ascending", [True, False])
@pytest.mark.parametrize("method", ["average", "min", "max", "first", "dense"])
@pytest.mark.parametrize("na_option", ["top", "bottom", "keep"])
@pytest.mark.parametrize(
"dtype, na_value, pos_inf, neg_inf",
[
("object", None, Infinity(), NegInfinity()),
("float64", np.nan, np.inf, -np.inf),
("Float64", NA, np.inf, -np.inf),
pytest.param(
"float64[pyarrow]",
NA,
np.inf,
-np.inf,
marks=td.skip_if_no("pyarrow"),
),
],
)
def test_rank_tie_methods_on_infs_nans(
self, method, na_option, ascending, dtype, na_value, pos_inf, neg_inf
):
td.versioned_importorskip("scipy")
if dtype == "float64[pyarrow]":
if method == "average":
exp_dtype = "float64[pyarrow]"
else:
exp_dtype = "uint64[pyarrow]"
else:
exp_dtype = "float64"
chunk = 3
in_arr = [neg_inf] * chunk + [na_value] * chunk + [pos_inf] * chunk
iseries = Series(in_arr, dtype=dtype)
exp_ranks = {
"average": ([2, 2, 2], [5, 5, 5], [8, 8, 8]),
"min": ([1, 1, 1], [4, 4, 4], [7, 7, 7]),
"max": ([3, 3, 3], [6, 6, 6], [9, 9, 9]),
"first": ([1, 2, 3], [4, 5, 6], [7, 8, 9]),
"dense": ([1, 1, 1], [2, 2, 2], [3, 3, 3]),
}
ranks = exp_ranks[method]
if na_option == "top":
order = [ranks[1], ranks[0], ranks[2]]
elif na_option == "bottom":
order = [ranks[0], ranks[2], ranks[1]]
else:
order = [ranks[0], [np.nan] * chunk, ranks[1]]
expected = order if ascending else order[::-1]
expected = list(chain.from_iterable(expected))
result = iseries.rank(method=method, na_option=na_option, ascending=ascending)
tm.assert_series_equal(result, Series(expected, dtype=exp_dtype))
def test_rank_desc_mix_nans_infs(self):
# GH 19538
# check descending ranking when mix nans and infs
iseries = Series([1, np.nan, np.inf, -np.inf, 25])
result = iseries.rank(ascending=False)
exp = Series([3, np.nan, 1, 4, 2], dtype="float64")
tm.assert_series_equal(result, exp)
@pytest.mark.parametrize("method", ["average", "min", "max", "first", "dense"])
@pytest.mark.parametrize(
"op, value",
[
[operator.add, 0],
[operator.add, 1e6],
[operator.mul, 1e-6],
],
)
def test_rank_methods_series(self, method, op, value):
sp_stats = td.versioned_importorskip("scipy.stats")
xs = np.random.default_rng(2).standard_normal(9)
xs = np.concatenate([xs[i:] for i in range(0, 9, 2)]) # add duplicates
np.random.default_rng(2).shuffle(xs)
index = [chr(ord("a") + i) for i in range(len(xs))]
vals = op(xs, value)
ts = Series(vals, index=index)
result = ts.rank(method=method)
sprank = sp_stats.rankdata(vals, method if method != "first" else "ordinal")
expected = Series(sprank, index=index).astype("float64")
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"ser, exp",
[
([1], [1]),
([2], [1]),
([0], [1]),
([2, 2], [1, 1]),
([1, 2, 3], [1, 2, 3]),
([4, 2, 1], [3, 2, 1]),
([1, 1, 5, 5, 3], [1, 1, 3, 3, 2]),
([-5, -4, -3, -2, -1], [1, 2, 3, 4, 5]),
],
)
def test_rank_dense_method(self, dtype, ser, exp):
if ser[0] < 0 and dtype.startswith("str"):
exp = exp[::-1]
s = Series(ser).astype(dtype)
result = s.rank(method="dense")
expected = Series(exp).astype(expected_dtype(dtype, "dense"))
tm.assert_series_equal(result, expected)
def test_rank_descending(self, ser, results, dtype, using_infer_string):
method, _ = results
if dtype == "int64" or (not using_infer_string and dtype == "str"):
s = ser.dropna()
else:
s = ser.astype(dtype)
res = s.rank(ascending=False)
if dtype.startswith("str"):
expected = (s.astype("float64").max() - s.astype("float64")).rank()
else:
expected = (s.max() - s).rank()
tm.assert_series_equal(res, expected.astype(expected_dtype(dtype, "average")))
if dtype.startswith("str"):
expected = (s.astype("float64").max() - s.astype("float64")).rank(
method=method
)
else:
expected = (s.max() - s).rank(method=method)
res2 = s.rank(method=method, ascending=False)
tm.assert_series_equal(res2, expected.astype(expected_dtype(dtype, method)))
def test_rank_int(self, ser, results):
method, exp = results
s = ser.dropna().astype("i8")
result = s.rank(method=method)
expected = Series(exp).dropna()
expected.index = result.index
tm.assert_series_equal(result, expected)
def test_rank_object_bug(self):
# GH 13445
# smoke tests
Series([np.nan] * 32).astype(object).rank(ascending=True)
Series([np.nan] * 32).astype(object).rank(ascending=False)
def test_rank_modify_inplace(self):
# GH 18521
# Check rank does not mutate series
s = Series([Timestamp("2017-01-05 10:20:27.569000"), NaT])
expected = s.copy()
s.rank()
result = s
tm.assert_series_equal(result, expected)
def test_rank_ea_small_values(self):
# GH#52471
ser = Series(
[5.4954145e29, -9.791984e-21, 9.3715776e-26, NA, 1.8790257e-28],
dtype="Float64",
)
result = ser.rank(method="min")
expected = Series([4, 1, 3, np.nan, 2])
tm.assert_series_equal(result, expected)
# GH15630, pct should be on 100% basis when method='dense'
@pytest.mark.parametrize(
"ser, exp",
[
([1], [1.0]),
([1, 2], [1.0 / 2, 2.0 / 2]),
([2, 2], [1.0, 1.0]),
([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
([1, 2, 2], [1.0 / 2, 2.0 / 2, 2.0 / 2]),
([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]),
([1, 1, 5, 5, 3], [1.0 / 3, 1.0 / 3, 3.0 / 3, 3.0 / 3, 2.0 / 3]),
([1, 1, 3, 3, 5, 5], [1.0 / 3, 1.0 / 3, 2.0 / 3, 2.0 / 3, 3.0 / 3, 3.0 / 3]),
([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]),
],
)
def test_rank_dense_pct(dtype, ser, exp):
if ser[0] < 0 and dtype.startswith("str"):
exp = exp[::-1]
s = Series(ser).astype(dtype)
result = s.rank(method="dense", pct=True)
expected = Series(exp).astype(expected_dtype(dtype, "dense", pct=True))
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"ser, exp",
[
([1], [1.0]),
([1, 2], [1.0 / 2, 2.0 / 2]),
([2, 2], [1.0 / 2, 1.0 / 2]),
([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
([1, 2, 2], [1.0 / 3, 2.0 / 3, 2.0 / 3]),
([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]),
([1, 1, 5, 5, 3], [1.0 / 5, 1.0 / 5, 4.0 / 5, 4.0 / 5, 3.0 / 5]),
([1, 1, 3, 3, 5, 5], [1.0 / 6, 1.0 / 6, 3.0 / 6, 3.0 / 6, 5.0 / 6, 5.0 / 6]),
([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]),
],
)
def test_rank_min_pct(dtype, ser, exp):
if ser[0] < 0 and dtype.startswith("str"):
exp = exp[::-1]
s = Series(ser).astype(dtype)
result = s.rank(method="min", pct=True)
expected = Series(exp).astype(expected_dtype(dtype, "min", pct=True))
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"ser, exp",
[
([1], [1.0]),
([1, 2], [1.0 / 2, 2.0 / 2]),
([2, 2], [1.0, 1.0]),
([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
([1, 2, 2], [1.0 / 3, 3.0 / 3, 3.0 / 3]),
([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]),
([1, 1, 5, 5, 3], [2.0 / 5, 2.0 / 5, 5.0 / 5, 5.0 / 5, 3.0 / 5]),
([1, 1, 3, 3, 5, 5], [2.0 / 6, 2.0 / 6, 4.0 / 6, 4.0 / 6, 6.0 / 6, 6.0 / 6]),
([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]),
],
)
def test_rank_max_pct(dtype, ser, exp):
if ser[0] < 0 and dtype.startswith("str"):
exp = exp[::-1]
s = Series(ser).astype(dtype)
result = s.rank(method="max", pct=True)
expected = Series(exp).astype(expected_dtype(dtype, "max", pct=True))
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"ser, exp",
[
([1], [1.0]),
([1, 2], [1.0 / 2, 2.0 / 2]),
([2, 2], [1.5 / 2, 1.5 / 2]),
([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
([1, 2, 2], [1.0 / 3, 2.5 / 3, 2.5 / 3]),
([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]),
([1, 1, 5, 5, 3], [1.5 / 5, 1.5 / 5, 4.5 / 5, 4.5 / 5, 3.0 / 5]),
([1, 1, 3, 3, 5, 5], [1.5 / 6, 1.5 / 6, 3.5 / 6, 3.5 / 6, 5.5 / 6, 5.5 / 6]),
([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]),
],
)
def test_rank_average_pct(dtype, ser, exp):
if ser[0] < 0 and dtype.startswith("str"):
exp = exp[::-1]
s = Series(ser).astype(dtype)
result = s.rank(method="average", pct=True)
expected = Series(exp).astype(expected_dtype(dtype, "average", pct=True))
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"ser, exp",
[
([1], [1.0]),
([1, 2], [1.0 / 2, 2.0 / 2]),
([2, 2], [1.0 / 2, 2.0 / 2.0]),
([1, 2, 3], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
([1, 2, 2], [1.0 / 3, 2.0 / 3, 3.0 / 3]),
([4, 2, 1], [3.0 / 3, 2.0 / 3, 1.0 / 3]),
([1, 1, 5, 5, 3], [1.0 / 5, 2.0 / 5, 4.0 / 5, 5.0 / 5, 3.0 / 5]),
([1, 1, 3, 3, 5, 5], [1.0 / 6, 2.0 / 6, 3.0 / 6, 4.0 / 6, 5.0 / 6, 6.0 / 6]),
([-5, -4, -3, -2, -1], [1.0 / 5, 2.0 / 5, 3.0 / 5, 4.0 / 5, 5.0 / 5]),
],
)
def test_rank_first_pct(dtype, ser, exp):
if ser[0] < 0 and dtype.startswith("str"):
exp = exp[::-1]
s = Series(ser).astype(dtype)
result = s.rank(method="first", pct=True)
expected = Series(exp).astype(expected_dtype(dtype, "first", pct=True))
tm.assert_series_equal(result, expected)
@pytest.mark.single_cpu
def test_pct_max_many_rows():
# GH 18271
s = Series(np.arange(2**24 + 1))
result = s.rank(pct=True).max()
assert result == 1
|