File: likeComp_cupti_only.cu

package info (click to toggle)
papi 5.7.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 9,856 kB
  • sloc: ansic: 93,265; fortran: 3,338; xml: 2,460; makefile: 815; sh: 290
file content (646 lines) | stat: -rw-r--r-- 28,721 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
/* 
 * This example is taken from the NVIDIA documentation (Copyright 1993-2013
 * NVIDIA Corporation) and has been adapted to show the use of CUPTI in
 * collecting event counters for multiple GPU contexts.
 *
 * 'likeComp' does the job the component does: breaking the metric events
 * out into a list and then building a group from that list, and trying to 
 * read it.
 */

/*
 * This software contains source code provided by NVIDIA Corporation
 *
 * According to the Nvidia EULA (compute 5.5 version)
 * http://developer.download.nvidia.com/compute/cuda/5_5/rel/docs/EULA.pdf
 *
 * Chapter 2. NVIDIA CORPORATION CUDA SAMPLES END USER LICENSE AGREEMENT
 * 2.1.1. Source Code
 * Developer shall have the right to modify and create derivative works with the Source
 * Code. Developer shall own any derivative works ("Derivatives") it creates to the Source
 * Code, provided that Developer uses the Materials in accordance with the terms and
 * conditions of this Agreement. Developer may distribute the Derivatives, provided that
 * all NVIDIA copyright notices and trademarks are propagated and used properly and
 * the Derivatives include the following statement: “This software contains source code
 * provided by NVIDIA Corporation.”
 */

/*
 * This application demonstrates how to use the CUDA API to use multiple GPUs,
 * with an emphasis on simple illustration of the techniques (not on performance).
 *
 * Note that in order to detect multiple GPUs in your system you have to disable
 * SLI in the nvidia control panel. Otherwise only one GPU is visible to the
 * application. On the other side, you can still extend your desktop to screens
 * attached to both GPUs.
 */

// System includes
#include <stdio.h>
#include <assert.h>

// CUDA runtime
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_runtime_api.h>
#include <cupti.h>
#include <timer.h>

#include "papi.h"
#include "papi_test.h"

#ifndef MAX
#define MAX(a,b) (a > b ? a : b)
#endif

#include "simpleMultiGPU.h"

// //////////////////////////////////////////////////////////////////////////////
// Data configuration
// //////////////////////////////////////////////////////////////////////////////
const int MAX_GPU_COUNT = 32;
const int DATA_N = 48576 * 32;
char *NameToCollect = NULL;

#define CHECK_CU_ERROR(err, cufunc)                                     \
    if (err != CUDA_SUCCESS) { printf ("Error %d for CUDA Driver API function '%s'\n", err, cufunc); return -1; }

#define CHECK_CUDA_ERROR(err)                                           \
    if (err != cudaSuccess) { printf ("%s:%i Error %d for CUDA [%s]\n", __FILE__, __LINE__, err, cudaGetErrorString(err) ); return -1; }

#define CUPTI_CALL(call)                                                      \
do {                                                                          \
    CUptiResult _status = call;                                               \
    if (_status != CUPTI_SUCCESS) {                                           \
        const char *errstr;                                                   \
        cuptiGetResultString(_status, &errstr);                               \
        fprintf(stderr, "%s:%d: error: function %s failed with error %s.\n",  \
                __FILE__, __LINE__, #call, errstr);                           \
        exit(-1);                                                             \
    }                                                                         \
} while (0)

#define CHECK_ALLOC_ERROR(var)                                                 \
do {                                                                           \
    if (var == NULL) {                                                         \
        fprintf(stderr, "%s:%d: Error: Memory Allocation Failed \n",           \
                __FILE__, __LINE__);                                           \
        exit(-1);                                                              \
    }                                                                          \
} while (0)

// //////////////////////////////////////////////////////////////////////////////
// Simple reduction kernel.
// Refer to the 'reduction' CUDA SDK sample describing
// reduction optimization strategies
// //////////////////////////////////////////////////////////////////////////////
__global__ static void reduceKernel( float *d_Result, float *d_Input, int N )
{
    const int tid = blockIdx.x * blockDim.x + threadIdx.x;
    const int threadN = gridDim.x * blockDim.x;
    float sum = 0;
    
    for( int pos = tid; pos < N; pos += threadN )
        sum += d_Input[pos];
    
    d_Result[tid] = sum;
}

static void printUsage() {
    printf("usage: Perform a CUPTI only test of an event or metric.\n");
    printf("       -help           : display help message\n");
    printf("       EVENT_NAME      : or Metric, must be the LAST argument, after any flags.\n");
    printf("Note the PAPI prefix of 'cuda:::event:' or 'cuda:::metric:' should be left off,\n");
    printf("also any ':device=n' suffix. Those are PAPI added elements for disambiguation. \n");
}

void parseCommandLineArgs(int argc, char *argv[])
{
    if (argc < 2) {
        printf("Invalid number of options\n");
        printUsage();
        exit(0);
    }

   NameToCollect = argv[1];                                 // Record name to collect. 
} // end routine.

//-----------------------------------------------------------------------------
// Return a text version with B, KB, MB, GB or TB. 
//-----------------------------------------------------------------------------
#define DIM(x) (sizeof(x)/sizeof(*(x)))
void calculateSize(char *result, uint64_t size)
{
    int i;

    const char *sizes[] = { "TB", "GB", "MB", "KB", "B" };
    uint64_t exbibytes = 1024ULL * 1024ULL * 1024ULL * 1024ULL;

    uint64_t multiplier = exbibytes;

    for(i = 0; (unsigned) i < DIM(sizes); i++, multiplier /= (uint64_t) 1024) {
        if(size < multiplier)
            continue;
        sprintf(result, "%.1f %s", (float) size / multiplier, sizes[i]);
        return;
    }
    strcpy(result, "0");
    return;
} // end routine


//-------------------------------------------------------------------------------------------------
// Returns the values in the event groups. Caller must know the number of events, and eventValues
// must be large enough to hold that many. eventIDArray must be large enough to hold that many 
// event IDs.
//-------------------------------------------------------------------------------------------------
void readEventGroup(CUpti_EventGroup eventGroup,
                    CUdevice dev, 
                    uint32_t numEvents,
                    CUpti_EventID *eventIdArray,
                    uint64_t *eventValues) {

    size_t bufferSizeBytes, numCountersRead;
    size_t eventIdArrayBytes= sizeof(CUpti_EventID) * numEvents;
    size_t numTotalInstancesSize = 0;
    uint64_t numTotalInstances = 0;
    uint32_t i = 0, j = 0;
    CUpti_EventDomainID domainId;
    size_t domainSize;

    domainSize = sizeof(CUpti_EventDomainID);

    CUPTI_CALL(cuptiEventGroupGetAttribute(eventGroup, 
                                           CUPTI_EVENT_GROUP_ATTR_EVENT_DOMAIN_ID, 
                                           &domainSize, 
                                           (void *)&domainId));

    numTotalInstancesSize = sizeof(uint64_t);

    CUPTI_CALL(cuptiDeviceGetEventDomainAttribute(dev, 
                                              domainId, 
                                              CUPTI_EVENT_DOMAIN_ATTR_TOTAL_INSTANCE_COUNT, 
                                              &numTotalInstancesSize, 
                                              (void *)&numTotalInstances));

    printf("LINE %i, DeviceEventDomainAttribute numTotalInstances=%llu.\n", __LINE__, numTotalInstances);

    bufferSizeBytes = sizeof(uint64_t) * numEvents * numTotalInstances;
    uint64_t *eventValueArray = (uint64_t *) malloc(bufferSizeBytes);
    CHECK_ALLOC_ERROR(eventValueArray);

    for (i=0; i<numEvents; i++) eventValues[i]=0;                               // init the values.
    
    CUPTI_CALL(cuptiEventGroupReadAllEvents(eventGroup, 
                                            CUPTI_EVENT_READ_FLAG_NONE,
                                            &bufferSizeBytes, 
                                            eventValueArray, 
                                            &eventIdArrayBytes, 
                                            eventIdArray, 
                                            &numCountersRead));

    printf("LINE %i, numCountersRead=%u.\n", __LINE__, numCountersRead);
    if (numCountersRead != numEvents) {
        if (numCountersRead > numEvents) exit(-1);
    }
    
    // Arrangement of 2-d Array returned in eventValueArray:
    //    domain instance 0: event0 event1 ... eventN
    //    domain instance 1: event0 event1 ... eventN
    //    ...
    //    domain instance M: event0 event1 ... eventN
    // But we accumulate by column, event[0], event[1], etc.

    for (i = 0; i < numEvents; i++) {                   // outer loop column traversal.
        for (j = 0; j < numTotalInstances; j++) {       // inner loop row traversal.
            eventValues[i] += eventValueArray[i + numEvents * j];
        }
    }

    free(eventValueArray);                              // Done with this.
} // end routine. 


//-------------------------------------------------------------------------------------------------
// For reading a metric. This still requires a group of events.
// This cannot read a metric that requires more than one group; if you need that, we need to pass
// a set instead, and loop through the groups in the set, and accumulate a table of the collected
// events. TC
//-------------------------------------------------------------------------------------------------
void readMetricValue(CUpti_EventGroup eventGroup, uint32_t numEvents,
                    CUdevice dev, CUpti_MetricID *metricId,
                    uint64_t ns_timeDuration,
                    CUpti_MetricValue *metricValue) {
    int i;
    uint64_t *eventValues = NULL;
    CUpti_EventID *eventIDs;

    size_t eventValuesSize = sizeof(uint64_t) * numEvents;
    size_t eventIDsSize = sizeof(CUpti_EventID) * numEvents;

    eventValues = (uint64_t *) malloc(eventValuesSize);
    CHECK_ALLOC_ERROR(eventValues);

    eventIDs = (CUpti_EventID *) malloc(eventIDsSize);
    CHECK_ALLOC_ERROR(eventIDs);

    readEventGroup(eventGroup, dev, numEvents, eventIDs, eventValues);          // Read the event group.
    for (i=0; i<numEvents; i++) {
        printf("   readMetricValue: EventID %lu=read %lu.\n", eventIDs[i], eventValues[i]);
    }

    CUPTI_CALL(cuptiMetricGetValue(dev, metricId[0],
        eventIDsSize, eventIDs, 
        eventValuesSize, eventValues, 
        ns_timeDuration, metricValue));

    free(eventValues);
    free(eventIDs);
} // end routine.


  // Print metric value, we format based on the value kind
int printMetricValue(CUpti_MetricID metricId, CUpti_MetricValue metricValue, 
        const char *metricName) {

    CUpti_MetricValueKind valueKind;
    char str[64];
    size_t valueKindSize = sizeof(valueKind);

    CUPTI_CALL(cuptiMetricGetAttribute(metricId, CUPTI_METRIC_ATTR_VALUE_KIND,
                                       &valueKindSize, &valueKind));
    switch (valueKind) {

    case CUPTI_METRIC_VALUE_KIND_DOUBLE:
        printf("%s = %f\n", metricName, metricValue.metricValueDouble);
        break;

    case CUPTI_METRIC_VALUE_KIND_UINT64:
        printf("%s = ", metricName);
        calculateSize(str, (uint64_t)metricValue.metricValueUint64);
        printf("%s\n", str);
        break;

    case CUPTI_METRIC_VALUE_KIND_INT64:
        printf("%s = ", metricName);
        calculateSize(str, (uint64_t)metricValue.metricValueInt64);
        printf("%s\n", str);
        break;

    case CUPTI_METRIC_VALUE_KIND_PERCENT:
        printf("%s = %.2f%%\n", metricName, metricValue.metricValueDouble);
        break;

    case CUPTI_METRIC_VALUE_KIND_THROUGHPUT:
        printf("%s = ", metricName);
        calculateSize(str, (uint64_t)metricValue.metricValueThroughput);
        printf("%s\n", str);
        break;

    default:
        fflush(stdout);
        fprintf(stderr, "error: unknown value kind = %li\n", valueKind);
        return -1;                                                      // indicate failure.
    }

    return 0;                                                           // indicate success.
} // end routine.


// //////////////////////////////////////////////////////////////////////////////
// Program main
// //////////////////////////////////////////////////////////////////////////////
int main( int argc, char **argv )
{
    // Solver config
    TGPUplan plan[MAX_GPU_COUNT];
    // GPU reduction results
    float h_SumGPU[MAX_GPU_COUNT];
    float sumGPU;
    double sumCPU, diff;
    int i, j, gpuBase, GPU_N;
    
    const int BLOCK_N = 32;
    const int THREAD_N = 256;
    const int ACCUM_N = BLOCK_N * THREAD_N;

    CUcontext ctx[MAX_GPU_COUNT];
    
    printf( "Starting cudaTest_cupti_only.\n" );

    // Parse command line arguments
    parseCommandLineArgs(argc, argv);
    
    // Report on the available CUDA devices
    int computeCapabilityMajor = 0, computeCapabilityMinor = 0;
    int runtimeVersion = 0, driverVersion = 0;
    char deviceName[64];
    CUdevice device[MAX_GPU_COUNT];
    CHECK_CUDA_ERROR( cudaGetDeviceCount( &GPU_N ) );
    if( GPU_N > MAX_GPU_COUNT ) GPU_N = MAX_GPU_COUNT;
    printf( "CUDA-capable device count: %i\n", GPU_N );
    for ( i=0; i<GPU_N; i++ ) {
        CHECK_CU_ERROR( cuDeviceGet( &device[i], i ), "cuDeviceGet" );
        CHECK_CU_ERROR( cuDeviceGetName( deviceName, 64, device[i] ), "cuDeviceGetName" );
        CHECK_CU_ERROR( cuDeviceGetAttribute( &computeCapabilityMajor, 
            CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, device[i]), "cuDeviceGetAttribute");
        CHECK_CU_ERROR( cuDeviceGetAttribute( &computeCapabilityMinor, 
            CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, device[i]), "cuDeviceGetAttribute");
        cudaRuntimeGetVersion( &runtimeVersion );
        cudaDriverGetVersion( &driverVersion );
        printf( "CUDA Device %d: %s : computeCapability %d.%d runtimeVersion %d.%d driverVersion %d.%d\n", 
            i, deviceName, computeCapabilityMajor, computeCapabilityMinor, 
            runtimeVersion/1000, (runtimeVersion%100)/10, driverVersion/1000, (driverVersion%100)/10 );
        if ( computeCapabilityMajor < 2 ) {
            printf( "CUDA Device %d compute capability is too low... will not add any more GPUs\n", i );
            GPU_N = i;
            break;
        }
    } // end for each device.

    uint32_t cupti_linked_version;
    cuptiGetVersion( &cupti_linked_version );
    printf("CUPTI version: Compiled against version %d; Linked against version %d\n", 
            CUPTI_API_VERSION, cupti_linked_version );
    
    // create one context per device
    for (i = 0; i < GPU_N; i++) {
        CHECK_CUDA_ERROR( cudaSetDevice( i ) );
        CHECK_CU_ERROR( cuCtxCreate( &(ctx[i]), 0, device[i] ), "cuCtxCreate" );
        CHECK_CU_ERROR( cuCtxPopCurrent(&(ctx[i])), "cuCtxPopCurrent" );
    }

    printf("Searching for '%s'.\n", NameToCollect);
    CUptiResult     myCURes;
    CUpti_EventID   eventId;
    CUpti_MetricID  metricId;
    CUpti_MetricValueKind metricKind;
    size_t          metricKindSize = sizeof(CUpti_MetricValueKind);
    uint32_t        numSubs; // Number of sub-events in Metric.
    
    int isMetric = 0;                                           // Presume this is not a metric.
    int numEventGroups = 0;
    int numMetricEvents[MAX_GPU_COUNT]={0};
    size_t sizeInt = sizeof(int);

    myCURes = cuptiEventGetIdFromName(0, NameToCollect, &eventId);
    if (myCURes == CUPTI_SUCCESS) {
        printf("Found '%s' as an event.\n", NameToCollect);
    } else {
        myCURes = cuptiMetricGetIdFromName(0, NameToCollect, &metricId);
        if (myCURes == CUPTI_SUCCESS) {
            isMetric = 1;                                       // remember we found a metric.
            printf("Found '%s' as a metric.\n", NameToCollect);
        } else {
            printf("'%s' not found, as event or as metric.\n", NameToCollect);
            exit(-1);
        }
    }

    printf( "Generating input data...\n" );
    
    // Subdividing input data across GPUs
    // Get data sizes for each GPU
    for( i = 0; i < GPU_N; i++ )
        plan[i].dataN = DATA_N / GPU_N;
    // Take into account "odd" data sizes
    for( i = 0; i < DATA_N % GPU_N; i++ )
        plan[i].dataN++;
    
    // Assign data ranges to GPUs
    gpuBase = 0;
    for( i = 0; i < GPU_N; i++ ) {
        plan[i].h_Sum = h_SumGPU + i; // point within h_SumGPU array
        gpuBase += plan[i].dataN;
    }

  
    // Create streams for issuing GPU command asynchronously and allocate memory (GPU and System page-locked)
    for( i = 0; i < GPU_N; i++ ) {
        CHECK_CUDA_ERROR( cudaSetDevice( i ) );
        CHECK_CU_ERROR(cuCtxPushCurrent(ctx[i]), "cuCtxPushCurrent");
        CHECK_CUDA_ERROR( cudaStreamCreate( &plan[i].stream ) );
        CHECK_CUDA_ERROR( cudaMalloc( ( void ** ) &plan[i].d_Data, plan[i].dataN * sizeof( float ) ) );
        CHECK_CUDA_ERROR( cudaMalloc( ( void ** ) &plan[i].d_Sum, ACCUM_N * sizeof( float ) ) );
        CHECK_CUDA_ERROR( cudaMallocHost( ( void ** ) &plan[i].h_Sum_from_device, ACCUM_N * sizeof( float ) ) );
        CHECK_CUDA_ERROR( cudaMallocHost( ( void ** ) &plan[i].h_Data, plan[i].dataN * sizeof( float ) ) );
        for( j = 0; j < plan[i].dataN; j++ ) {
            plan[i].h_Data[j] = ( float ) rand() / ( float ) RAND_MAX;
        }
        CHECK_CU_ERROR( cuCtxPopCurrent(&(ctx[i])), "cuCtxPopCurrent" );
    }
    
    // Create the group(s) needed to read the metric or event.
    CUpti_EventGroup eg[MAX_GPU_COUNT];                                 // event group only.
    CUpti_EventGroupSets* egs[MAX_GPU_COUNT];                           // need event group sets for metric.
    
    if (isMetric) {                                                     // If it is a metric, need a set.
        printf("Setup CUPTI counters internally for metric '%s'.\n", NameToCollect);
        for ( i=0; i<GPU_N; i++ ) {                                         // For every device, 
            CHECK_CUDA_ERROR( cudaSetDevice( i ) );
            CHECK_CU_ERROR(cuCtxPushCurrent(ctx[i]), "cuCtxPushCurrent");
            CUPTI_CALL(cuptiSetEventCollectionMode(ctx[i], 
                CUPTI_EVENT_COLLECTION_MODE_CONTINUOUS));   // note: CONTINOUS v. KERNEL made no difference in result.


            // Here is where the change occurs. We have metricId.
            // First, get number of events.
            
            CUPTI_CALL(cuptiMetricGetNumEvents(metricId, &numSubs));    // Get number of events needed for metric.
            size_t sizeBytes = numSubs * sizeof(CUpti_EventID);         // bytes needed to store events.
            CUpti_EventID *subEventIds = (CUpti_EventID*) malloc(sizeBytes);        // Get the space for them.
            CUPTI_CALL(cuptiMetricEnumEvents(metricId, &sizeBytes, subEventIds));   // Collect the events.
            
            for (j=0; j<numSubs; j++) printf("Metric subEvent %i: %lu\n", j, subEventIds[j]);
            
            CUPTI_CALL(cuptiMetricGetAttribute(                         // Get the kind.
                metricId, 
                CUPTI_METRIC_ATTR_VALUE_KIND, 
                &metricKindSize, &metricKind));
            printf("Metric value kind = %i.\n", metricKind);
 
            CUPTI_CALL(cuptiEventGroupSetsCreate(                           // create event group sets.
                ctx[i],
                sizeBytes, subEventIds,
                &egs[i]));                              

//          The proper way to do it.
//          CUPTI_CALL(cuptiMetricCreateEventGroupSets(ctx[i], 
//              sizeof(CUpti_MetricID), &metricId, &egs[i]));               // Get the pointer to sets.
            
            printf("Metric device %i requires %i sets.\n", i, egs[i]->numSets);
            if (egs[i]->numSets > 1) {
                printf("'%s' requires multiple application runs to complete. Aborting.\n", NameToCollect);
                exit(-1);
            }

            numEventGroups = egs[i]->sets[0].numEventGroups;                // collect groups in only set.
            if (numEventGroups > 1) {
                printf("'%s' requires multiple groups to complete metric. Aborting.\n", NameToCollect);
                exit(-1);
            }

            // DEBUG note: This has to change to support metrics with multiple
            // groups, if we ever see them.  can't use eg[i], for example,
            // you'd need a different one on each GPU. Tony C.

            for (j=0; j<numEventGroups; j++) {
                uint32_t one = 1;
                eg[i] = egs[i]->sets[0].eventGroups[j];                             // Copy the group.
                CUPTI_CALL(cuptiEventGroupSetAttribute(eg[i], 
                    CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES,
                    sizeof(uint32_t), &one));
                CUPTI_CALL(cuptiEventGroupGetAttribute(
                    eg[i], CUPTI_EVENT_GROUP_ATTR_NUM_EVENTS,
                    &sizeInt, &numMetricEvents[i]));                                // read # of events on this device.
                printf("Group %i has %i events.\n", j+1, numMetricEvents[i]);

                size_t subSize = numMetricEvents[i] * sizeof(CUpti_EventID);        // size in bytes.
                CUpti_EventID *subEvents = (CUpti_EventID*) malloc(subSize);
                CUPTI_CALL( cuptiMetricEnumEvents(metricId, &subSize, subEvents));
                int k;
                for (k=0; k<numMetricEvents[i]; k++) {
                    printf("    Group %i event %i ID=%lu\n", j+1, k, subEvents[k]);
                }
    
                free(subEvents);                                                    // free memory used for diagnostic.
            } 

            CUPTI_CALL(cuptiEventGroupSetEnable(&egs[i]->sets[0]));                 // Enable all groups in set.

            CHECK_CU_ERROR( cuCtxPopCurrent(&(ctx[i])), 
                "cuCtxPopCurrent" );
        } // end of devices.
    } else {                                                            // If it is an event, just need one group. 
        printf("Setup CUPTI counters internally for event '%s' (CUPTI_ONLY)\n", NameToCollect);

        for ( i=0; i<GPU_N; i++ ) {                                     // For every device, 
            CHECK_CUDA_ERROR( cudaSetDevice( i ) );
            CHECK_CU_ERROR(cuCtxPushCurrent(ctx[i]), "cuCtxPushCurrent");
            CUPTI_CALL(cuptiSetEventCollectionMode(ctx[i], 
                CUPTI_EVENT_COLLECTION_MODE_CONTINUOUS));
            CUPTI_CALL( cuptiEventGroupCreate( ctx[i], &eg[i], 0 ));
            CUPTI_CALL( cuptiEventGroupAddEvent(eg[i], eventId));
            CUPTI_CALL( cuptiEventGroupEnable( eg[i] )); 
            CHECK_CU_ERROR( cuCtxPopCurrent(&(ctx[i])), 
                "cuCtxPopCurrent" );
        } // end of devices.
    } // end of if metric/event.
    
    // Start timing and compute on GPU(s)
    printf( "Computing with %d GPUs...\n", GPU_N );
   
    uint64_t ns_timeDuration;                                                   // cuda device time elapsed. 
    uint64_t startTimestamp, endTimestamp;
    CUPTI_CALL(cuptiGetTimestamp(&startTimestamp));                             // We need time in ns for metrics.

    // Copy data to GPU, launch the kernel and copy data back. All asynchronously
    for (i = 0; i < GPU_N; i++) {
        // Set device
        CHECK_CUDA_ERROR( cudaSetDevice( i ));
        CHECK_CU_ERROR(cuCtxPushCurrent(ctx[i]), "cuCtxPushCurrent");
        // Copy input data from CPU
        CHECK_CUDA_ERROR( cudaMemcpyAsync( plan[i].d_Data, plan[i].h_Data, plan[i].dataN * sizeof( float ), cudaMemcpyHostToDevice, plan[i].stream ) );
        // Perform GPU computations
        reduceKernel <<< BLOCK_N, THREAD_N, 0, plan[i].stream >>> ( plan[i].d_Sum, plan[i].d_Data, plan[i].dataN );
        if ( cudaGetLastError() != cudaSuccess ) { printf( "reduceKernel() execution failed (GPU %d).\n", i ); exit(EXIT_FAILURE); }
        // Read back GPU results
        CHECK_CUDA_ERROR( cudaMemcpyAsync( plan[i].h_Sum_from_device, plan[i].d_Sum, ACCUM_N * sizeof( float ), cudaMemcpyDeviceToHost, plan[i].stream ) );
        CHECK_CU_ERROR( cuCtxPopCurrent(&(ctx[i])), "cuCtxPopCurrent" );
    }
    
    // Process GPU results
    printf( "Process GPU results on %d GPUs...\n", GPU_N );
    for( i = 0; i < GPU_N; i++ ) {
        float sum;
        // Set device
        CHECK_CUDA_ERROR( cudaSetDevice( i ) );
        CHECK_CU_ERROR(cuCtxPushCurrent(ctx[i]), "cuCtxPushCurrent");
        // Wait for all operations to finish
        cudaStreamSynchronize( plan[i].stream );
        // Finalize GPU reduction for current subvector
        sum = 0;
        for( j = 0; j < ACCUM_N; j++ ) {
            sum += plan[i].h_Sum_from_device[j];
        }
        *( plan[i].h_Sum ) = ( float ) sum;
        CHECK_CU_ERROR( cuCtxPopCurrent(&(ctx[i])), "cuCtxPopCurrent" );
    }

    CUPTI_CALL(cuptiGetTimestamp(&endTimestamp));
    ns_timeDuration = endTimestamp - startTimestamp;

    double gpuTime = (ns_timeDuration/((double) 1000000.0));                    // convert to ms.

    // Now, we must read the metric/event. 
    size_t size = 1024;
    uint64_t buffer[size];

    for ( i=0; i<GPU_N; i++ ) {                                                 // for each device,
        CHECK_CUDA_ERROR( cudaSetDevice( i ) );                                 // point at it.
        CHECK_CU_ERROR(cuCtxPushCurrent(ctx[i]), "cuCtxPushCurrent");
        CHECK_CU_ERROR( cuCtxSynchronize( ), "cuCtxSynchronize" );              // wait for all to finish.

        if (isMetric) {                                                         // If we have a metric,
            CUpti_MetricValue metricValue;
            readMetricValue(eg[i], numMetricEvents[i], 
            device[i], &metricId,
            ns_timeDuration, &metricValue);
            printf("Device %i, Metric: ",i);                                    // prefix the printing...
            printMetricValue(metricId, metricValue, NameToCollect);             // Print "name = value\n".
        } else {                                                                // If we have just an event.
            readEventGroup(eg[i], device[i], 
                1, &eventId,                                                    // just 1 event.
                &buffer[i]);
            printf( "CUPTI %s device %d counterValue %u (on one domain, "
                    "may need to be multiplied by num of domains)\n", 
                    NameToCollect, i, buffer[i] );
        }

        CHECK_CU_ERROR( cuCtxPopCurrent(&(ctx[i])), "cuCtxPopCurrent" );
    }

    sumGPU = 0;
    for( i = 0; i < GPU_N; i++ ) {
        sumGPU += h_SumGPU[i];
    }
    printf( "  GPU Processing time: %f (ms)\n", gpuTime );

    // Compute on Host CPU
    printf( "Computing the same result with Host CPU...\n" );
    StartTimer();
    sumCPU = 0;
    for( i = 0; i < GPU_N; i++ ) {
        for( j = 0; j < plan[i].dataN; j++ ) {
            sumCPU += plan[i].h_Data[j];
        }
    }
    double cpuTime = GetTimer();
    if (gpuTime > 0) {
        printf( "  CPU Processing time: %f (ms) (speedup %.2fX)\n", cpuTime, (cpuTime/gpuTime) );
    } else {
        printf( "  CPU Processing time: %f (ms)\n", cpuTime);
    }

    // Compare GPU and CPU results
    printf( "Comparing GPU and Host CPU results...\n" );
    diff = fabs( sumCPU - sumGPU ) / fabs( sumCPU );
    printf( "  GPU sum: %f\n  CPU sum: %f\n", sumGPU, sumCPU );
    printf( "  Relative difference: %E \n", diff );

    // Cleanup and shutdown
    for( i = 0; i < GPU_N; i++ ) {
        CHECK_CUDA_ERROR( cudaSetDevice(i) );
        CHECK_CU_ERROR(cuCtxPushCurrent(ctx[i]), "cuCtxPushCurrent");
        CHECK_CUDA_ERROR( cudaStreamSynchronize(plan[i].stream) ); 
        CHECK_CUDA_ERROR( cudaFreeHost( plan[i].h_Sum_from_device ) );
        CHECK_CUDA_ERROR( cudaFree( plan[i].d_Sum ) );
        CHECK_CUDA_ERROR( cudaFree( plan[i].d_Data ) );
        CHECK_CUDA_ERROR( cudaStreamDestroy( plan[i].stream ) );
        CHECK_CUDA_ERROR( cudaFreeHost( plan[i].h_Data ) );
        CHECK_CU_ERROR( cuCtxPopCurrent(&(ctx[i])), "cuCtxPopCurrent" );
    }

    exit( ( diff < 1e-5 ) ? EXIT_SUCCESS : EXIT_FAILURE );
}