File: bench.cc

package info (click to toggle)
parallel-hashmap 1.4.1%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,872 kB
  • sloc: cpp: 20,492; ansic: 1,114; python: 492; makefile: 85; haskell: 56; perl: 43; sh: 23
file content (481 lines) | stat: -rw-r--r-- 15,064 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
#include <inttypes.h>

#ifdef STL_UNORDERED
    #include <unordered_map>
    #define MAPNAME std::unordered_map
    #define EXTRAARGS
#elif defined(PHMAP_FLAT)
    #include "parallel_hashmap/phmap.h"
    #define MAPNAME phmap::flat_hash_map
    #define NMSP phmap
    #define EXTRAARGS
#else
    #include "parallel_hashmap/phmap.h"

    #if 1
        #include <mutex>
        #define MTX std::mutex
    #elif 0
        // Abseil's mutexes are very efficient (at least on windows)
        #include "absl/synchronization/mutex.h"
        #define MTX phmap::AbslMutex
    #elif 1
        #include <boost/thread/locks.hpp>
        #if 1
            #include <boost/thread/mutex.hpp>
            #define MTX boost::mutex // faster if all we do is exclusive locks like this bench
        #else
            #include <boost/thread/shared_mutex.hpp>
            #define MTX boost::upgrade_mutex 
        #endif
    #elif 1
        #include <windows.h>
        class srwlock {
            SRWLOCK _lock;
        public:
            srwlock()     { InitializeSRWLock(&_lock); }
            void lock()   { AcquireSRWLockExclusive(&_lock); }
            void unlock() { ReleaseSRWLockExclusive(&_lock); }
        };
        #define MTX srwlock
    #else
        // spinlocks - slow!
        #include <atomic>
        class spinlock {
            std::atomic_flag flag = ATOMIC_FLAG_INIT;
        public:
            void lock()   { while(flag.test_and_set(std::memory_order_acquire)); }
            void unlock() { flag.clear(std::memory_order_release); }
        };
        #define MTX spinlock
    #endif

    #define MAPNAME phmap::parallel_flat_hash_map
    #define NMSP phmap

    #define MT_SUPPORT 1
    #if MT_SUPPORT == 1
        // create the parallel_flat_hash_map without internal mutexes, for when 
        // we programatically ensure that each thread uses different internal submaps
        // --------------------------------------------------------------------------
        #define EXTRAARGS , NMSP::priv::hash_default_hash<K>, \
                            NMSP::priv::hash_default_eq<K>, \
                            std::allocator<std::pair<const K, V>>, 4, NMSP::NullMutex
    #elif MT_SUPPORT == 2
        // create the parallel_flat_hash_map with internal mutexes, for when 
        // we read/write the same parallel_flat_hash_map from multiple threads, 
        // without any special precautions.
        // --------------------------------------------------------------------------
        #define EXTRAARGS , NMSP::priv::hash_default_hash<K>, \
                            NMSP::priv::hash_default_eq<K>, \
                            std::allocator<std::pair<const K, V>>, 4, MTX
    #else
        #define EXTRAARGS
    #endif
#endif

#define phmap_xstr(s) phmap_str(s)
#define phmap_str(s) #s

template <class K, class V>
using HashT      = MAPNAME<K, V EXTRAARGS>;

using hash_t     = HashT<int64_t, int64_t>;
using str_hash_t = HashT<const char *, int64_t>;

const char *program_slug = phmap_xstr(MAPNAME); // "_4";

#include <cassert>
#include <ctime>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <thread>  
#include <chrono>
#include <ostream>
#include "parallel_hashmap/meminfo.h"
#include <vector>
using std::vector;

int64_t _abs(int64_t x) { return (x < 0) ? -x : x; }

#ifdef _MSC_VER
    #pragma warning(disable : 4996)
#endif  // _MSC_VER

// --------------------------------------------------------------------------
class Timer 
{
    typedef std::chrono::high_resolution_clock high_resolution_clock;
    typedef std::chrono::milliseconds milliseconds;

public:
    explicit Timer(bool run = false) { if (run) reset(); }
    void reset() { _start = high_resolution_clock::now(); }

    milliseconds elapsed() const
    {
        return std::chrono::duration_cast<milliseconds>(high_resolution_clock::now() - _start);
    }

private:
    high_resolution_clock::time_point _start;
};


// --------------------------------------------------------------------------
//  from: https://github.com/preshing/RandomSequence
// --------------------------------------------------------------------------
class RSU
{
private:
    unsigned int m_index;
    unsigned int m_intermediateOffset;

    static unsigned int permuteQPR(unsigned int x)
    {
        static const unsigned int prime = 4294967291u;
        if (x >= prime)
            return x;  // The 5 integers out of range are mapped to themselves.
        unsigned int residue = ((unsigned long long) x * x) % prime;
        return (x <= prime / 2) ? residue : prime - residue;
    }

public:
    RSU(unsigned int seedBase, unsigned int seedOffset)
    {
        m_index = permuteQPR(permuteQPR(seedBase) + 0x682f0161);
        m_intermediateOffset = permuteQPR(permuteQPR(seedOffset) + 0x46790905);
    }

    unsigned int next()
    {
        return permuteQPR((permuteQPR(m_index++) + m_intermediateOffset) ^ 0x5bf03635);
    }
};

// --------------------------------------------------------------------------
char * new_string_from_integer(uint64_t num)
{
    int ndigits = num == 0 ? 1 : (int)log10(num) + 1;
    char * str = (char *)malloc(ndigits + 1);
    sprintf(str, "%u", (unsigned int)num);
    return str;
}

// --------------------------------------------------------------------------
template <class T> 
void _fill(vector<T> &v)
{
    srand(1);   // for a fair/deterministic comparison 
    for (size_t i = 0, sz = v.size(); i < sz; ++i) 
        v[i] = (T)(i * 10 + rand() % 10);
}

// --------------------------------------------------------------------------
template <class T> 
void _shuffle(vector<T> &v)
{
    for (size_t n = v.size(); n >= 2; --n)
        std::swap(v[n - 1], v[static_cast<unsigned>(rand()) % n]);
}

// --------------------------------------------------------------------------
template <class T, class HT>
Timer _fill_random(vector<T> &v, HT &hash)
{
    _fill<T>(v);
    _shuffle<T>(v);
    
    Timer timer(true);

    for (size_t i = 0, sz = v.size(); i < sz; ++i)
        hash.insert(typename HT::value_type(v[i], 0));
    return timer;
}

// --------------------------------------------------------------------------
void out(const char* test, int64_t cnt, const Timer &t, bool  = false)
{
    printf("%s,time,%u,%s,%f\n", test, (unsigned int)cnt, program_slug, 
           (float)((double)t.elapsed().count() / 1000));
}

// --------------------------------------------------------------------------
void outmem(const char*, int64_t cnt, uint64_t mem, bool final = false)
{
    static uint64_t max_mem = 0;
    static uint64_t max_keys = 0;
    if (final)
        printf("peak memory usage for %u values: %.2f GB\n",  (unsigned int)max_keys, 
               max_mem / ((double)1000 * 1000 * 1000));
    else {
        if (mem > max_mem)
            max_mem = mem;
        if ((uint64_t)cnt > max_keys)
            max_keys = cnt;
    }
}

static bool all_done = false;
static int64_t s_num_keys[16] = { 0 };
static int64_t loop_idx = 0;
static int64_t inner_cnt = 0;
static const char *test = "random";

// --------------------------------------------------------------------------
template <class HT>
void _fill_random_inner(int64_t cnt, HT &hash, RSU &rsu)
{
    for (int64_t i=0; i<cnt; ++i)
    {
        hash.insert(typename HT::value_type(rsu.next(), 0));
        ++s_num_keys[0];
    }
}

// --------------------------------------------------------------------------
template <class HT>
void _fill_random_inner_mt(int64_t cnt, HT &hash, RSU &rsu)
{
    constexpr int64_t num_threads = 8;   // has to be a power of two
    std::unique_ptr<std::thread> threads[num_threads];

    auto thread_fn = [&hash, cnt, num_threads](size_t thread_idx, RSU rsu_) {
#if MT_SUPPORT
        size_t modulo = hash.subcnt() / num_threads;        // subcnt() returns the number of submaps

        for (int64_t i=0; i<cnt; ++i)                       // iterate over all values
        {
            unsigned int key = rsu_.next();                  // get next key to insert
#if MT_SUPPORT == 1
            size_t hashval = hash.hash(key);                   // compute its hash
            size_t idx  = hash.subidx(hashval);             // compute the submap index for this hash
            if (idx / modulo == thread_idx)                 // if the submap is suitable for this thread
#elif MT_SUPPORT == 2
            if (i % num_threads == thread_idx)
#endif
            {
                hash.insert(typename HT::value_type(key, 0)); // insert the value
                ++(s_num_keys[thread_idx]);                     // increment count of inserted values
            }
        }
#endif
    };

    // create and start 8 threads - each will insert in their own submaps
    // thread 0 will insert the keys whose hash direct them to submap0 or submap1
    // thread 1 will insert the keys whose hash direct them to submap2 or submap3
    // --------------------------------------------------------------------------
    for (size_t i=0; i<num_threads; ++i)
        threads[i].reset(new std::thread(thread_fn, i, rsu));

    // rsu passed by value to threads... we need to increment the reference object
    for (int64_t i=0; i<cnt; ++i)
        rsu.next();
    
    // wait for the threads to finish their work and exit
    for (size_t i=0; i<num_threads; ++i)
        threads[i]->join();
}

// --------------------------------------------------------------------------
size_t total_num_keys()
{
    size_t n = 0;
    for (int i=0; i<16; ++i)
        n += s_num_keys[i];
    return n;
}
    
// --------------------------------------------------------------------------
template <class HT>
Timer _fill_random2(int64_t cnt, HT &hash)
{
    test = "random";
    unsigned int seed = 76687;
	RSU rsu(seed, seed + 1);

    Timer timer(true);
    const int64_t num_loops = 10;
    inner_cnt = cnt / num_loops;

    for (int i=0; i<16; ++i)
        s_num_keys[i] = 0;

    for (loop_idx=0; loop_idx<num_loops; ++loop_idx)
    {
#if 1 && MT_SUPPORT
        // multithreaded insert
        _fill_random_inner_mt(inner_cnt, hash, rsu);
#else
        _fill_random_inner(inner_cnt, hash, rsu);
#endif
        out(test, total_num_keys(), timer);
    }
    fprintf(stderr, "inserted %.2lfM\n", (double)hash.size() / 1000000);
    outmem(test, total_num_keys(), spp::GetProcessMemoryUsed());
    return timer;
}

// --------------------------------------------------------------------------
template <class T, class HT>
Timer _lookup(vector<T> &v, HT &hash, size_t &num_present)
{
    _fill_random(v, hash);

    num_present = 0;
    size_t max_val = v.size() * 10;
    Timer timer(true);

    for (size_t i = 0, sz = v.size(); i < sz; ++i)
    {
        num_present += (size_t)(hash.find(v[i]) != hash.end());
        num_present += (size_t)(hash.find((T)(rand() % max_val)) != hash.end());
    }
    return timer;
}

// --------------------------------------------------------------------------
template <class T, class HT>
Timer _delete(vector<T> &v, HT &hash)
{
    _fill_random(v, hash);
    _shuffle(v); // don't delete in insertion order

    Timer timer(true);

    for(size_t i = 0, sz = v.size(); i < sz; ++i)
        hash.erase(v[i]);
    return timer;
}

// --------------------------------------------------------------------------
void memlog()
{
    std::this_thread::sleep_for(std::chrono::milliseconds(10));
    uint64_t nbytes_old_out = spp::GetProcessMemoryUsed();
    uint64_t nbytes_old     = spp::GetProcessMemoryUsed(); // last non outputted mem measurement
    outmem(test, 0, nbytes_old);
    int64_t last_loop = 0;

    while (!all_done)
    {
        uint64_t nbytes = spp::GetProcessMemoryUsed();

        if ((double)_abs(nbytes - nbytes_old_out) / nbytes_old_out > 0.03 ||
            (double)_abs(nbytes - nbytes_old) / nbytes_old > 0.01)
        {
            if ((double)(nbytes - nbytes_old) / nbytes_old > 0.03)
                outmem(test, total_num_keys() - 1, nbytes_old);
            outmem(test, total_num_keys(), nbytes);
            nbytes_old_out = nbytes;
            last_loop = loop_idx;
        } 
        else if (loop_idx > last_loop)
        {
            outmem(test, total_num_keys(), nbytes);
            nbytes_old_out = nbytes;
            last_loop = loop_idx;
        }
        nbytes_old = nbytes;

        std::this_thread::sleep_for(std::chrono::milliseconds(1));
    }
}


// --------------------------------------------------------------------------
int main(int argc, char ** argv)
{
    int64_t num_keys = 100000000;
    const char *bench_name = "random";
    int64_t i, value = 0;

    if(argc > 2)
    {
        num_keys = atoi(argv[1]);
        bench_name = argv[2];
    }

    hash_t     hash; 
    str_hash_t str_hash;

    srand(1); // for a fair/deterministic comparison 
    Timer timer(true);
    
#if MT_SUPPORT
    if (!strcmp(program_slug,"absl::parallel_flat_hash_map") || 
        !strcmp(program_slug,"phmap::parallel_flat_hash_map"))
        program_slug = phmap_xstr(MAPNAME) "_mt";
#endif

    std::thread t1(memlog);

    try 
    {
        if(!strcmp(bench_name, "sequential"))
        {
            for(i = 0; i < num_keys; i++)
                hash.insert(hash_t::value_type(i, value));
        }
#if 0
        else if(!strcmp(bench_name, "random"))
        {
            vector<int64_t> v(num_keys);
            timer = _fill_random(v, hash);
            out("random", num_keys, timer);
        }
#endif
        else if(!strcmp(bench_name, "random"))
        {
            fprintf(stderr, "size = %zu\n", sizeof(hash));
            timer = _fill_random2(num_keys, hash);
         }
        else if(!strcmp(bench_name, "lookup"))
        {
            vector<int64_t> v(num_keys);
            size_t num_present;

            timer = _lookup(v, hash, num_present);
            //fprintf(stderr, "found %zu\n", num_present);
        }
        else if(!strcmp(bench_name, "delete"))
        {
            vector<int64_t> v(num_keys);
            timer = _delete(v,  hash);
        }
        else if(!strcmp(bench_name, "sequentialstring"))
        {
            for(i = 0; i < num_keys; i++)
                str_hash.insert(str_hash_t::value_type(new_string_from_integer(i), value));
        }
        else if(!strcmp(bench_name, "randomstring"))
        {
            for(i = 0; i < num_keys; i++)
                str_hash.insert(str_hash_t::value_type(new_string_from_integer((int)rand()), value));
        }
        else if(!strcmp(bench_name, "deletestring"))
        {
            for(i = 0; i < num_keys; i++)
                str_hash.insert(str_hash_t::value_type(new_string_from_integer(i), value));
            timer.reset();
            for(i = 0; i < num_keys; i++)
                str_hash.erase(new_string_from_integer(i));
        }
        
 
        //printf("%f\n", (float)((double)timer.elapsed().count() / 1000));
        fflush(stdout);
        //std::this_thread::sleep_for(std::chrono::seconds(1000));
    }
    catch (...)
    {
    }

    all_done = true;
    outmem(test, 0, 0, true);
    t1.join();
    return 0;
}