1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
// ------------------------------------------------------------------
// run with: knucleotide 0 < ../examples/knucleotide-input.txt
// ------------------------------------------------------------------
//
// output should be:
//
// T 31.520
// A 29.600
// C 19.480
// G 19.400
//
// AT 9.922
// TT 9.602
// TA 9.402
// AA 8.402
// GA 6.321
// TC 6.301
// TG 6.201
// GT 6.041
// CT 5.961
// AG 5.841
// CA 5.461
// AC 5.441
// CC 4.041
// CG 4.021
// GC 3.701
// GG 3.341
//
// 54 GGT
// 24 GGTA
// 4 GGTATT
// 0 GGTATTTTAATT
// 0 GGTATTTTAATTTATAGT
// ------------------------------------------------------------------
#include <iostream>
#include <iomanip>
#include <cstdint>
#include <string>
#include <algorithm>
#include <map>
#include <thread>
#include <type_traits>
#include <cstring>
#include <array>
#include <vector>
#include <cassert>
#include <parallel_hashmap/phmap.h>
// ------------------------------------------------------------------
constexpr size_t thread_count = 4;
struct Cfg {
unsigned char *to_char;
unsigned char to_num[128];
using Data = std::vector<unsigned char>;
Cfg() {
static unsigned char __tochar[] = {'A', 'C', 'T', 'G'};
to_char = __tochar;
to_num[static_cast<unsigned char>('A')] = to_num[static_cast<unsigned char>('a')] = 0;
to_num[static_cast<unsigned char>('C')] = to_num[static_cast<unsigned char>('c')] = 1;
to_num[static_cast<unsigned char>('T')] = to_num[static_cast<unsigned char>('t')] = 2;
to_num[static_cast<unsigned char>('G')] = to_num[static_cast<unsigned char>('g')] = 3;
}
} const cfg;
// ------------------------------------------------------------------
template <size_t size>
struct Key
{
// select type to use for 'data', if hash key can fit on 32-bit integer
// then use uint32_t else use uint64_t.
using Data = typename std::conditional<size<=16, uint32_t, uint64_t>::type;
struct Hash {
Data operator()(const Key& t)const{ return t._data; }
};
Key() : _data(0) {
}
Key(const char *str) {
_data = 0;
for(unsigned i = 0; i < size; ++i){
_data <<= 2;
_data |= cfg.to_num[unsigned(str[i])];
}
}
// initialize hash from input data
void InitKey(const unsigned char *data) {
for(unsigned i = 0; i < size; ++i){
_data <<= 2;
_data |= data[i];
}
}
// updates the key with 1 byte
void UpdateKey(const unsigned char data) {
_data <<= 2;
_data |= data;
}
// masks out excess information
void MaskKey() {
_data &= _mask;
}
// implicit casting operator to string
operator std::string() const {
std::string tmp;
Data data = _data;
for(size_t i = 0; i != size; ++i, data >>= 2)
tmp += cfg.to_char[data & 3ull];
std::reverse(tmp.begin(), tmp.end());
return tmp;
}
bool operator== (const Key& in) const {
return _data == in._data;
}
private:
static constexpr Data _mask = ~(Data(-1) << (2 * size));
Data _data;
};
// ------------------------------------------------------------------
template <size_t size, typename K = Key<size> >
using HashTable = phmap::flat_hash_map<K, unsigned, typename K::Hash>;
// ------------------------------------------------------------------
template <size_t size>
void Calculate(const Cfg::Data& input, size_t begin, HashTable<size>& table)
{
// original implementation fully recomputes the hash key for each
// insert to the hash table. This implementation only partially
// updates the hash, this is the same with C GCC, Rust #6 and Rust #4
Key<size> key;
// initialize key
key.InitKey(input.data() + begin);
// use key to increment value
++table[key];
auto itr_begin = input.data() + begin + thread_count;
auto itr_end = (input.data() + input.size() + 1) - size;
size_t nsize = std::min(size, thread_count);
for(;itr_begin < itr_end; itr_begin += thread_count) {
// update the key 1 byte at a time
for(unsigned i = 0; i < nsize; ++i)
key.UpdateKey( itr_begin[i] );
// then finally mask out excess information
key.MaskKey();
// then use key to increment value
++table[key];
}
}
// ------------------------------------------------------------------
template <size_t size>
HashTable<size> CalculateInThreads(const Cfg::Data& input)
{
HashTable<size> hash_tables[thread_count];
std::thread threads[thread_count];
auto invoke = [&](unsigned begin) {
Calculate<size>(input, begin, hash_tables[begin]);
};
for(unsigned i = 0; i < thread_count; ++i)
threads[i] = std::thread(invoke, i);
for(auto& i : threads)
i.join();
auto& frequencies = hash_tables[0];
for(unsigned i = 1 ; i < thread_count; ++i)
for(auto& j : hash_tables[i])
frequencies[j.first] += j.second;
// return the 'frequency' by move instead of copy.
return std::move(frequencies);
}
// ------------------------------------------------------------------
template <unsigned size>
void WriteFrequencies(const Cfg::Data& input)
{
// we "receive" the returned object by move instead of copy.
auto&& frequencies = CalculateInThreads<size>(input);
std::map<unsigned, std::string, std::greater<unsigned>> freq;
for(const auto& i: frequencies)
freq.insert({i.second, i.first});
const unsigned sum = static_cast<unsigned>(input.size()) + 1 - size;
for(const auto& i : freq)
std::cout << i.second << ' ' << (sum ? double(100 * i.first) / sum : 0.0) << '\n';
std::cout << '\n';
}
// ------------------------------------------------------------------
template <unsigned size>
void WriteCount( const Cfg::Data& input, const char *text ) {
// we "receive" the returned object by move instead of copy.
auto&& frequencies = CalculateInThreads<size>(input);
std::cout << frequencies[Key<size>(text)] << '\t' << text << '\n';
}
// ------------------------------------------------------------------
int main()
{
Cfg::Data data;
std::array<char, 256> buf;
while(fgets(buf.data(), static_cast<int>(buf.size()), stdin) && memcmp(">THREE", buf.data(), 6));
while(fgets(buf.data(), static_cast<int>(buf.size()), stdin) && buf.front() != '>') {
if(buf.front() != ';'){
auto i = std::find(buf.begin(), buf.end(), '\n');
data.insert(data.end(), buf.begin(), i);
}
}
std::transform(data.begin(), data.end(), data.begin(), [](unsigned char c){
return cfg.to_num[c];
});
std::cout << std::setprecision(3) << std::setiosflags(std::ios::fixed);
WriteFrequencies<1>(data);
WriteFrequencies<2>(data);
// value at left is the length of the passed string.
WriteCount<3>(data, "GGT");
WriteCount<4>(data, "GGTA");
WriteCount<6>(data, "GGTATT");
WriteCount<12>(data, "GGTATTTTAATT");
WriteCount<18>(data, "GGTATTTTAATTTATAGT");
}
|