File: 10_remove_default_password.patch

package info (click to toggle)
parallelpython 1.6.2-2
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 400 kB
  • sloc: python: 1,459; makefile: 35
file content (53 lines) | stat: -rw-r--r-- 42,786 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
Author: Sandro Tosi <morph@debian.org>
Description: This patch removes the default password from pp code, requiring users to
explicitly write one; it updates the documentation along the source code
Index: parallelpython-1.6.2/doc/ppdoc.html
===================================================================
--- parallelpython-1.6.2.orig/doc/ppdoc.html	2012-06-03 09:39:09.000000000 +0200
+++ parallelpython-1.6.2/doc/ppdoc.html	2012-06-07 22:22:03.412216150 +0200
@@ -140,7 +140,7 @@
 		<table class="contentpaneopen">
 				<tr>
 			<td valign="top" colspan="2">
-				<p>&nbsp;<a href="http://www.parallelpython.com/content/view/15/30/#API">Module API</a> <br />&nbsp;<a href="http://www.parallelpython.com/content/view/15/30/#QUICKSMP">Quick start guide, SMP</a><br />&nbsp;<a href="http://www.parallelpython.com/content/view/15/30/#QUICKCLUSTERS">Quick start guide, clusters<br />&nbsp;</a><a href="http://www.parallelpython.com/content/view/15/30/#QUICKCLUSTERSAUTO">Quick start guide, clusters with auto-discovery</a><br /> &nbsp;<a href="http://www.parallelpython.com/content/view/15/30/#ADVANCEDCLUSTERS">Advanced guide, clusters</a><br /> &nbsp;<a href="http://www.parallelpython.com/content/view/15/30/#COMMANDLINE">Command line arguments, ppserver.py</a><br />&nbsp;<a href="http://www.parallelpython.com/content/view/15/30/#SECURITY">Security and secret key</a><br />&nbsp;<a href="component/option,com_smf/Itemid,29/topic,210.msg653#msg653" title="PP FAQ">PP FAQ</a> </p><hr /> <p>&nbsp;</p><h1 id="API">&nbsp; pp 1.6.2 module API</h1>   <p> <table border="0" cellspacing="0" cellpadding="2" width="100%" summary="section"> <tbody><tr bgcolor="#ffc8d8"> <td colspan="3" valign="bottom">&nbsp;<br /> <font face="helvetica, arial" color="#000000"><a name="Server" title="Server"></a>class <strong>Server</strong></font></td></tr>      <tr bgcolor="#ffc8d8"><td rowspan="2">&nbsp;&nbsp;&nbsp;</td> <td colspan="2">Parallel&nbsp;Python&nbsp;SMP&nbsp;execution&nbsp;server&nbsp;class<br />&nbsp;</td></tr> <tr><td>&nbsp;</td> <td width="100%">Methods defined here:<br />  <dl><dt><a name="Server-__init__" title="Server-__init__"></a><strong>__init__</strong>(self, ncpus<font color="#909090">=&#39;autodetect&#39;</font>, ppservers<font color="#909090">=()</font>, secret<font color="#909090">=None</font>, restart<font color="#909090">=False</font>, proto<font color="#909090">=2</font>, socket_timeout<font color="#909090">=3600</font>)</dt><dd>Creates&nbsp;<a href="http://www.parallelpython.com/content/view/15/30/#Server">Server</a>&nbsp;instance<br />  &nbsp;</dd><dd>&nbsp;</dd><dd>&nbsp;</dd><dd> ncpus&nbsp;-&nbsp;the&nbsp;number&nbsp;of&nbsp;worker&nbsp;processes&nbsp;to&nbsp;start&nbsp;on&nbsp;the&nbsp;local&nbsp;<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;computer,&nbsp;if&nbsp;parameter&nbsp;is&nbsp;omitted&nbsp;it&nbsp;will&nbsp;be&nbsp;set&nbsp;to&nbsp;<br />  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;the&nbsp;number&nbsp;of&nbsp;processors&nbsp;in&nbsp;the&nbsp;system<br /> ppservers&nbsp;-&nbsp;list&nbsp;of&nbsp;active&nbsp;parallel&nbsp;python&nbsp;execution&nbsp;servers&nbsp;<br />  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;to&nbsp;connect&nbsp;with<br /> secret&nbsp;-&nbsp;passphrase&nbsp;for&nbsp;network&nbsp;connections,&nbsp;if&nbsp;omitted&nbsp;a&nbsp;default<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;passphrase&nbsp;will&nbsp;be&nbsp;used.&nbsp;It&#39;s&nbsp;highly&nbsp;recommended&nbsp;to&nbsp;use&nbsp;a&nbsp;<br />  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;custom&nbsp;passphrase&nbsp;for&nbsp;all&nbsp;network&nbsp;connections.<br /></dd><dd>restart&nbsp;- whether to&nbsp;restart&nbsp;worker&nbsp;process&nbsp;after&nbsp;each&nbsp;task&nbsp;completion&nbsp;<br /> proto&nbsp;-&nbsp;protocol&nbsp;number&nbsp;for&nbsp;pickle&nbsp;module</dd><dd>socket_timeout - socket timeout in seconds which is also the maximum <br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; time a remote job could be executed. Increase this value<br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; if you have long running jobs or decrease if connectivity<br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; to remote ppservers is often lost. <br /></dd><dd>&nbsp;  <br /> With&nbsp;ncpus&nbsp;=&nbsp;1&nbsp;all&nbsp;tasks&nbsp;are&nbsp;executed&nbsp;consequently<br /> For&nbsp;the&nbsp;best&nbsp;performance&nbsp;either&nbsp;use&nbsp;the&nbsp;default&nbsp;&quot;autodetect&quot;&nbsp;value<br />  or&nbsp;set&nbsp;ncpus&nbsp;to&nbsp;the&nbsp;total&nbsp;number&nbsp;of&nbsp;processors&nbsp;in&nbsp;the&nbsp;system</dd></dl><dl><dt><a name="Server-destroy" title="Server-destroy"></a><strong>destroy</strong>(self)</dt><dd>Kills&nbsp;ppworkers&nbsp;and&nbsp;closes&nbsp;open&nbsp;files</dd></dl>  <dl><dt><a name="Server-get_active_nodes" title="Server-get_active_nodes"></a><strong>get_active_nodes</strong>(self)</dt><dd>Returns&nbsp;active&nbsp;nodes&nbsp;as&nbsp;a&nbsp;dictionary&nbsp;<br />  [keys&nbsp;-&nbsp;nodes,&nbsp;values&nbsp;-&nbsp;ncpus]</dd></dl>  <dl><dt><a name="Server-get_ncpus" title="Server-get_ncpus"></a><strong>get_ncpus</strong>(self)</dt><dd>Returns&nbsp;the&nbsp;number&nbsp;of&nbsp;local&nbsp;worker&nbsp;processes&nbsp;(ppworkers)</dd></dl>  <dl><dt><a name="Server-get_stats" title="Server-get_stats"></a><strong>get_stats</strong>(self)</dt><dd>Returns&nbsp;job&nbsp;execution&nbsp;statistics&nbsp;as&nbsp;a&nbsp;dictionary</dd></dl><dl><dt><a name="Server-print_stats" title="Server-print_stats"></a><strong>print_stats</strong>(self)</dt><dd>Prints&nbsp;job&nbsp;execution&nbsp;statistics.&nbsp;Useful&nbsp;for&nbsp;benchmarking&nbsp;on&nbsp;<br />  clusters</dd></dl>  <dl><dt><a name="Server-set_ncpus" title="Server-set_ncpus"></a><strong>set_ncpus</strong>(self, ncpus<font color="#909090">=&#39;autodetect&#39;</font>)</dt><dd>Sets&nbsp;the&nbsp;number&nbsp;of&nbsp;local&nbsp;worker&nbsp;processes&nbsp;(ppworkers)<br /> &nbsp;<br />  ncpus&nbsp;-&nbsp;the&nbsp;number&nbsp;of&nbsp;worker&nbsp;processes,&nbsp;if&nbsp;parammeter&nbsp;is&nbsp;omitted<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;it&nbsp;will&nbsp;be&nbsp;set&nbsp;to&nbsp;the&nbsp;number&nbsp;of&nbsp;processors&nbsp;in&nbsp;the&nbsp;system</dd></dl>  <dl><dt><a name="Server-submit" title="Server-submit"></a><strong>submit</strong>(self, func, args<font color="#909090">=()</font>, depfuncs<font color="#909090">=()</font>, modules<font color="#909090">=()</font>, callback<font color="#909090">=None</font>, callbackargs<font color="#909090">=()</font>, group<font color="#909090">=&#39;default&#39;</font>, globals<font color="#909090">=None</font>)</dt><dd>Submits&nbsp;function&nbsp;to&nbsp;the&nbsp;execution&nbsp;queue<br />  &nbsp;<br /> func&nbsp;-&nbsp;function&nbsp;to&nbsp;be&nbsp;executed<br /> args&nbsp;-&nbsp;tuple&nbsp;with&nbsp;arguments&nbsp;of&nbsp;the&nbsp;&#39;func&#39;<br />  depfuncs&nbsp;-&nbsp;tuple&nbsp;with&nbsp;functions&nbsp;which&nbsp;might&nbsp;be&nbsp;called&nbsp;from&nbsp;&#39;func&#39;<br /> modules&nbsp;-&nbsp;tuple&nbsp;with&nbsp;module&nbsp;names&nbsp;to&nbsp;import<br />  callback&nbsp;-&nbsp;callback&nbsp;function&nbsp;which&nbsp;will&nbsp;be&nbsp;called&nbsp;with&nbsp;argument&nbsp;<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;list&nbsp;equal&nbsp;to&nbsp;callbackargs+(result,)&nbsp;<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;as&nbsp;soon&nbsp;as&nbsp;calculation&nbsp;is&nbsp;done<br />  callbackargs&nbsp;-&nbsp;additional&nbsp;arguments&nbsp;for&nbsp;callback&nbsp;function<br /> group&nbsp;-&nbsp;job&nbsp;group,&nbsp;is&nbsp;used&nbsp;when&nbsp;<a href="http://www.parallelpython.com/content/view/15/30/#Server-wait">wait</a>(group)&nbsp;is&nbsp;called&nbsp;to&nbsp;wait&nbsp;for<br />  jobs&nbsp;in&nbsp;a&nbsp;given&nbsp;group&nbsp;to&nbsp;finish<br /> globals&nbsp;-&nbsp;dictionary&nbsp;from&nbsp;which&nbsp;all&nbsp;modules,&nbsp;functions&nbsp;and&nbsp;classes<br />  will&nbsp;be&nbsp;imported,&nbsp;for&nbsp;instance:&nbsp;globals=globals()</dd></dl>  <dl><dt><a name="Server-wait" title="Server-wait"></a><strong>wait</strong>(self, group<font color="#909090">=None</font>)</dt><dd>Waits&nbsp;for&nbsp;all&nbsp;jobs&nbsp;in&nbsp;a&nbsp;given&nbsp;group&nbsp;to&nbsp;finish.<br />  If&nbsp;group&nbsp;is&nbsp;omitted&nbsp;waits&nbsp;for&nbsp;all&nbsp;jobs&nbsp;to&nbsp;finish</dd></dl>  <dl><dt><strong>default_port</strong> = 60000</dt></dl>  <dl><dt><strong>default_secret</strong> = &#39;epo20pdosl;dksldkmm&#39;</dt></dl>  </td></tr></tbody></table> </p><p> <table border="0" cellspacing="0" cellpadding="2" width="100%" summary="section"> <tbody><tr bgcolor="#ffc8d8"> <td colspan="3" valign="bottom">&nbsp;<br /> <font face="helvetica, arial" color="#000000"><a name="Template" title="Template"></a>class <strong>Template</strong></font></td></tr>      <tr bgcolor="#ffc8d8"><td rowspan="2">&nbsp;&nbsp;&nbsp;</td> <td colspan="2"><a href="http://www.parallelpython.com/content/view/15/30/#Template">Template</a>&nbsp;class<br />&nbsp;</td></tr>  <tr><td>&nbsp;</td> <td width="100%">Methods defined here:<br /> <dl><dt><a name="Template-__init__" title="Template-__init__"></a><strong>__init__</strong>(self, job_server, func, depfuncs<font color="#909090">=()</font>, modules<font color="#909090">=()</font>, callback<font color="#909090">=None</font>, callbackargs<font color="#909090">=()</font>, group<font color="#909090">=&#39;default&#39;</font>, globals<font color="#909090">=None</font>)</dt><dd>Creates&nbsp;<a href="http://www.parallelpython.com/content/view/15/30/#Template">Template</a>&nbsp;instance<br />  &nbsp;<br /> jobs_server&nbsp;-&nbsp;pp&nbsp;server&nbsp;for&nbsp;submitting&nbsp;jobs<br /> func&nbsp;-&nbsp;function&nbsp;to&nbsp;be&nbsp;executed<br /> depfuncs&nbsp;-&nbsp;tuple&nbsp;with&nbsp;functions&nbsp;which&nbsp;might&nbsp;be&nbsp;called&nbsp;from&nbsp;&#39;func&#39;<br />  modules&nbsp;-&nbsp;tuple&nbsp;with&nbsp;module&nbsp;names&nbsp;to&nbsp;import<br /> callback&nbsp;-&nbsp;callback&nbsp;function&nbsp;which&nbsp;will&nbsp;be&nbsp;called&nbsp;with&nbsp;argument&nbsp;<br />  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;list&nbsp;equal&nbsp;to&nbsp;callbackargs+(result,)&nbsp;<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;as&nbsp;soon&nbsp;as&nbsp;calculation&nbsp;is&nbsp;done<br /> callbackargs&nbsp;-&nbsp;additional&nbsp;arguments&nbsp;for&nbsp;callback&nbsp;function<br />  group&nbsp;-&nbsp;job&nbsp;group,&nbsp;is&nbsp;used&nbsp;when&nbsp;wait(group)&nbsp;is&nbsp;called&nbsp;to&nbsp;wait&nbsp;for<br /> jobs&nbsp;in&nbsp;a&nbsp;given&nbsp;group&nbsp;to&nbsp;finish<br />  globals&nbsp;-&nbsp;dictionary&nbsp;from&nbsp;which&nbsp;all&nbsp;modules,&nbsp;functions&nbsp;and&nbsp;classes<br /> will&nbsp;be&nbsp;imported,&nbsp;for&nbsp;instance:&nbsp;globals=globals()</dd></dl>  <dl><dt><a name="Template-submit" title="Template-submit"></a><strong>submit</strong>(self, *args)</dt><dd>Submits&nbsp;function&nbsp;with&nbsp;*arg&nbsp;arguments&nbsp;to&nbsp;the&nbsp;execution&nbsp;queue</dd></dl>   </td></tr></tbody></table></p><p> <table border="0" cellspacing="0" cellpadding="2" width="100%" summary="section">  <tbody><tr bgcolor="#55aa55"> <td colspan="3" valign="bottom">&nbsp;<br /> <font face="helvetica, arial" color="#ffffff"><strong>Data</strong></font></td></tr>      <tr><td bgcolor="#55aa55">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td><td>&nbsp;</td> <td width="100%"><strong>copyright</strong> = &#39;Copyright (c) 2005-2012 Vitalii Vanovschi. All rights reserved&#39;<br /> <strong>version</strong> = &#39;1.6.2&#39;</td></tr></tbody></table>      </p><hr /><h1 id="QUICKSMP">&nbsp; Quick start guide, SMP<br /></h1> <p>1) Import pp module:</p><p><strong>&nbsp;&nbsp;&nbsp; import pp</strong></p><p>2) Start pp execution server with the number of workers set to&nbsp;the&nbsp;number&nbsp;of&nbsp;processors&nbsp;in&nbsp;the&nbsp;system </p><p><strong>&nbsp;&nbsp;&nbsp; job_server = pp.Server()&nbsp;</strong></p><p>3) Submit all the tasks for parallel execution:</p><p><strong>&nbsp;&nbsp;&nbsp; f1 = job_server.submit(func1, args1, depfuncs1, modules1)</strong></p><p><strong>&nbsp;&nbsp;&nbsp; f2 = job_server.submit(func1, args2, depfuncs1, modules1) </strong></p><p><strong>&nbsp;&nbsp;&nbsp; f3 = job_server.submit(func2, args3, depfuncs2, modules2) </strong><br /> </p><p>&nbsp;&nbsp; ...etc...<br /></p><p>4) Retrieve the results as needed:</p><p><strong>&nbsp;&nbsp;&nbsp; r1 = f1()</strong></p><p><strong>&nbsp;&nbsp;&nbsp; r2 = f2()</strong></p><p><strong>&nbsp;&nbsp;&nbsp; r3 = f3()&nbsp;</strong> </p><p>&nbsp;&nbsp;&nbsp; ...etc...</p><p>&nbsp;To find out how to achieve efficient parallelization with pp please take a look at <a href="content/view/17/31/" title="Parallel Python Implementation Examples">examples</a> </p> <hr /><h1 id="QUICKCLUSTERS">&nbsp; Quick start guide, clusters&nbsp; </h1><p><em><strong>On the nodes</strong></em> <br /></p><p>1) Start parallel python execution server on all your remote computational nodes:</p><p><strong>&nbsp;&nbsp;&nbsp; node-1&gt; ./ppserver.py </strong></p><p><strong>&nbsp;&nbsp;&nbsp; node-2&gt; ./ppserver.py</strong></p><p><strong>&nbsp;&nbsp;&nbsp; node-3&gt; ./ppserver.py</strong></p><p><em><strong>On the client</strong></em> <br /></p><p>2) Import pp module:</p><p><strong>&nbsp;&nbsp;&nbsp; import pp</strong></p><p>3)&nbsp; Create a list of all the nodes in your cluster (computers where you&#39;ve run ppserver.py) </p><p><strong>&nbsp;&nbsp;&nbsp; ppservers=(&quot;node-1&quot;, &quot;node-2&quot;, &quot;node-3&quot;)</strong><br /></p><p>4) Start pp execution server with the number of workers set to&nbsp;the&nbsp;number&nbsp;of&nbsp;processors&nbsp;in&nbsp;the&nbsp;system and list of ppservers to connect with :</p><p><strong>&nbsp;&nbsp;&nbsp; job_server = pp.Server(</strong><strong>ppservers=</strong><strong>ppservers</strong><strong>)&nbsp;</strong></p><p>5) Submit all the tasks for parallel execution:</p><p><strong>&nbsp;&nbsp;&nbsp; f1 = job_server.submit(func1, args1, depfuncs1, modules1)</strong></p><p><strong>&nbsp;&nbsp;&nbsp; f2 = job_server.submit(func1, args2, depfuncs1, modules1) </strong></p><p><strong>&nbsp;&nbsp;&nbsp; f3 = job_server.submit(func2, args3, depfuncs2, modules2) </strong><br /> </p><p>&nbsp;&nbsp; ...etc...<br /></p><p>6) Retrieve the results as needed:</p><p><strong>&nbsp;&nbsp;&nbsp; r1 = f1()</strong></p><p><strong>&nbsp;&nbsp;&nbsp; r2 = f2()</strong></p><p><strong>&nbsp;&nbsp;&nbsp; r3 = f3()&nbsp;</strong> </p><p>&nbsp;&nbsp;&nbsp; ...etc...</p><p>&nbsp;To find out how to achieve efficient parallelization with pp please take a look at <a href="content/view/17/31/" title="Parallel Python Implementation Examples">examples</a></p> <hr /><h1 id="QUICKCLUSTERSAUTO">&nbsp; Quick start guide, clusters with autodiscovery<br /> </h1><p><em><strong>On the nodes</strong></em>&nbsp;</p><p>1) Start parallel python execution server on all your remote computational nodes:</p><p><strong>&nbsp;&nbsp;&nbsp; node-1&gt; ./ppserver.py -a<br /> </strong></p><p><strong>&nbsp;&nbsp;&nbsp; node-2&gt; ./ppserver.py -a</strong></p><p><strong>&nbsp;&nbsp;&nbsp; node-3&gt; ./ppserver.py -a<br /></strong></p><p><em><strong>On the client</strong></em></p><p>2) Import pp module:</p><p><strong>&nbsp;&nbsp;&nbsp; import pp</strong></p><p>3)&nbsp; Set ppservers list to auto-discovery: </p><p><strong>&nbsp;&nbsp;&nbsp; ppservers=(&quot;*&quot;,)</strong><br /></p><p>4) Start pp execution server with the number of workers set to&nbsp;the&nbsp;number&nbsp;of&nbsp;processors&nbsp;in&nbsp;the&nbsp;system and list of ppservers to connect with :</p><p><strong>&nbsp;&nbsp;&nbsp; job_server = pp.Server(</strong><strong>ppservers=</strong><strong>ppservers</strong><strong>)&nbsp;</strong></p><p>5) Submit all the tasks for parallel execution:</p><p><strong>&nbsp;&nbsp;&nbsp; f1 = job_server.submit(func1, args1, depfuncs1, modules1)</strong></p><p><strong>&nbsp;&nbsp;&nbsp; f2 = job_server.submit(func1, args2, depfuncs1, modules1) </strong></p><p><strong>&nbsp;&nbsp;&nbsp; f3 = job_server.submit(func2, args3, depfuncs2, modules2) </strong><br /> </p><p>&nbsp;&nbsp; ...etc...<br /></p><p>6) Retrieve the results as needed:</p><p><strong>&nbsp;&nbsp;&nbsp; r1 = f1()</strong></p><p><strong>&nbsp;&nbsp;&nbsp; r2 = f2()</strong></p><p><strong>&nbsp;&nbsp;&nbsp; r3 = f3()&nbsp;</strong> </p><p>&nbsp;&nbsp;&nbsp; ...etc...</p><p>&nbsp;To find out how to achieve efficient parallelization with pp please take a look at <a href="content/view/17/31/" title="Parallel Python Implementation Examples">examples</a>&nbsp; </p><hr /><h1 id="ADVANCEDCLUSTERS">&nbsp;&nbsp;&nbsp; Advanced guide, clusters&nbsp; </h1> <p><em><strong>On the nodes</strong></em> &nbsp;</p><p>1) Start parallel python execution server on all your remote computational nodes (listen to a given port 35000,<br /> and local network interface only, accept only connections which know correct secret):</p><p><strong>&nbsp;&nbsp;&nbsp; node-1&gt; ./ppserver.py -p 35000 -i 192.168.0.101 -s &quot;mysecret&quot;<br /></strong></p><p><strong>&nbsp;&nbsp;&nbsp; node-2&gt; ./ppserver.py -p 35000 -i 192.168.0.102</strong><strong> -s &quot;mysecret&quot;</strong></p><p><strong>&nbsp;&nbsp;&nbsp; node-3&gt; ./ppserver.py -p 35000 -i 192.168.0.103</strong><strong> -s &quot;mysecret&quot;</strong></p><p><em><strong>On the client</strong></em> <br /></p> <p>2) Import pp module:</p><p><strong>&nbsp;&nbsp;&nbsp; import pp</strong></p><p>3)&nbsp; Create a list of all the nodes in your cluster (computers where you&#39;ve run ppserver.py) </p><p><strong>&nbsp;&nbsp;&nbsp; ppservers=(&quot;node-1:35000&quot;, &quot;node-2:</strong><strong>35000</strong><strong>&quot;, &quot;node-3:</strong><strong>35000</strong><strong>&quot;)</strong><br /></p><p>4) Start pp execution server with the number of workers set to&nbsp;the&nbsp;number&nbsp;of&nbsp;processors&nbsp;in&nbsp;the&nbsp;system, <br />list of ppservers to connect with and secret key to authorize the connection:</p><p><strong>&nbsp;&nbsp;&nbsp; job_server = pp.Server(</strong><strong>ppservers=</strong><strong>ppservers</strong><strong>, secret=&quot;</strong><strong>mysecret</strong><strong>&quot;)&nbsp;</strong></p><p>5) Submit all the tasks for parallel execution:</p><p><strong>&nbsp;&nbsp;&nbsp; f1 = job_server.submit(func1, args1, depfuncs1, modules1)</strong></p><p><strong>&nbsp;&nbsp;&nbsp; f2 = job_server.submit(func1, args2, depfuncs1, modules1) </strong></p><p><strong>&nbsp;&nbsp;&nbsp; f3 = job_server.submit(func2, args3, depfuncs2, modules2) </strong><br /> </p><p>&nbsp;&nbsp; ...etc...<br /></p><p>6) Retrieve the results as needed:</p><p><strong>&nbsp;&nbsp;&nbsp; r1 = f1()</strong></p><p><strong>&nbsp;&nbsp;&nbsp; r2 = f2()</strong></p><p><strong>&nbsp;&nbsp;&nbsp; r3 = f3()&nbsp;</strong> </p><p>&nbsp;&nbsp;&nbsp; ...etc...</p><p>&nbsp;7) Print the execution statistics:<br /></p><p><strong>&nbsp;&nbsp;&nbsp; job_server.print_stats()</strong></p><p>To find out how to achieve efficient parallelization with pp please take a look at <a href="content/view/17/31/" title="Parallel Python Implementation Examples">examples</a> </p><hr /><h1 id="COMMANDLINE">&nbsp; Command line options, ppserver.py </h1> <pre>Usage: ppserver.py [-hda] [-i interface] [-b broadcast] [-p port] [-w nworkers] [-s secret] [-t seconds]<br /> Options:<br /> -h                 : this help message<br /> -d                 : debug<br /> -a                 : enable auto-discovery service<br /> -i interface       : interface to listen<br /> -b broadcast       : broadcast address for auto-discovery service<br /> -p port            : port to listen<br /> -w nworkers        : number of workers to start<br /> -s secret          : secret for authentication<br /> -t seconds         : timeout to exit if no connections with clients exist<br /> -k seconds         : socket timeout in seconds  <br /></pre><hr /><h1 id="COMMANDLINE">&nbsp; Security and secret key<a name="SECURITY" title="SECURITY"></a></h1><p>&nbsp;Due to the security concerns it is highly recommended to run ppserver.py with an non-trivial secret key (-s command line argument) which should be paired with the matching <em>secret</em> keyword of PP Server class constructor. Since PP 1.5.3 it is possible to set secret key by assigning <strong>pp_secret</strong> variable in the configuration file <strong>.pythonrc.py</strong> which should be located in the user home directory (please make this file readable and writable only by user). The key set in .pythonrc.py could be overridden by command line argument (for ppserver.py) and <em>secret</em> keyword (for PP Server class constructor). </p>

			</td>
+				<p>&nbsp;<a href="http://www.parallelpython.com/content/view/15/30/#API">Module API</a> <br />&nbsp;<a href="http://www.parallelpython.com/content/view/15/30/#QUICKSMP">Quick start guide, SMP</a><br />&nbsp;<a href="http://www.parallelpython.com/content/view/15/30/#QUICKCLUSTERS">Quick start guide, clusters<br />&nbsp;</a><a href="http://www.parallelpython.com/content/view/15/30/#QUICKCLUSTERSAUTO">Quick start guide, clusters with auto-discovery</a><br /> &nbsp;<a href="http://www.parallelpython.com/content/view/15/30/#ADVANCEDCLUSTERS">Advanced guide, clusters</a><br /> &nbsp;<a href="http://www.parallelpython.com/content/view/15/30/#COMMANDLINE">Command line arguments, ppserver.py</a><br />&nbsp;<a href="http://www.parallelpython.com/content/view/15/30/#SECURITY">Security and secret key</a><br />&nbsp;<a href="component/option,com_smf/Itemid,29/topic,210.msg653#msg653" title="PP FAQ">PP FAQ</a> </p><hr /> <p>&nbsp;</p><h1 id="API">&nbsp; pp 1.6.2 module API</h1>   <p> <table border="0" cellspacing="0" cellpadding="2" width="100%" summary="section"> <tbody><tr bgcolor="#ffc8d8"> <td colspan="3" valign="bottom">&nbsp;<br /> <font face="helvetica, arial" color="#000000"><a name="Server" title="Server"></a>class <strong>Server</strong></font></td></tr>      <tr bgcolor="#ffc8d8"><td rowspan="2">&nbsp;&nbsp;&nbsp;</td> <td colspan="2">Parallel&nbsp;Python&nbsp;SMP&nbsp;execution&nbsp;server&nbsp;class<br />&nbsp;</td></tr> <tr><td>&nbsp;</td> <td width="100%">Methods defined here:<br />  <dl><dt><a name="Server-__init__" title="Server-__init__"></a><strong>__init__</strong>(self, ncpus<font color="#909090">=&#39;autodetect&#39;</font>, ppservers<font color="#909090">=()</font>, secret<font color="#909090">=None</font>, restart<font color="#909090">=False</font>, proto<font color="#909090">=2</font>, socket_timeout<font color="#909090">=3600</font>)</dt><dd>Creates&nbsp;<a href="http://www.parallelpython.com/content/view/15/30/#Server">Server</a>&nbsp;instance<br />  &nbsp;</dd><dd>&nbsp;</dd><dd>&nbsp;</dd><dd> ncpus&nbsp;-&nbsp;the&nbsp;number&nbsp;of&nbsp;worker&nbsp;processes&nbsp;to&nbsp;start&nbsp;on&nbsp;the&nbsp;local&nbsp;<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;computer,&nbsp;if&nbsp;parameter&nbsp;is&nbsp;omitted&nbsp;it&nbsp;will&nbsp;be&nbsp;set&nbsp;to&nbsp;<br />  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;the&nbsp;number&nbsp;of&nbsp;processors&nbsp;in&nbsp;the&nbsp;system<br /> ppservers&nbsp;-&nbsp;list&nbsp;of&nbsp;active&nbsp;parallel&nbsp;python&nbsp;execution&nbsp;servers&nbsp;<br />  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;to&nbsp;connect&nbsp;with<br /> secret&nbsp;-&nbsp;passphrase&nbsp;for&nbsp;network&nbsp;connections,&nbsp;if&nbsp;omitted&nbsp;a&nbsp;default<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;passphrase&nbsp;will&nbsp;be&nbsp;used.&nbsp;It&#39;s&nbsp;highly&nbsp;recommended&nbsp;to&nbsp;use&nbsp;a&nbsp;<br />  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;custom&nbsp;passphrase&nbsp;for&nbsp;all&nbsp;network&nbsp;connections.<br /></dd><dd>restart&nbsp;- whether to&nbsp;restart&nbsp;worker&nbsp;process&nbsp;after&nbsp;each&nbsp;task&nbsp;completion&nbsp;<br /> proto&nbsp;-&nbsp;protocol&nbsp;number&nbsp;for&nbsp;pickle&nbsp;module</dd><dd>socket_timeout - socket timeout in seconds which is also the maximum <br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; time a remote job could be executed. Increase this value<br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; if you have long running jobs or decrease if connectivity<br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; to remote ppservers is often lost. <br /></dd><dd>&nbsp;  <br /> With&nbsp;ncpus&nbsp;=&nbsp;1&nbsp;all&nbsp;tasks&nbsp;are&nbsp;executed&nbsp;consequently<br /> For&nbsp;the&nbsp;best&nbsp;performance&nbsp;either&nbsp;use&nbsp;the&nbsp;default&nbsp;&quot;autodetect&quot;&nbsp;value<br />  or&nbsp;set&nbsp;ncpus&nbsp;to&nbsp;the&nbsp;total&nbsp;number&nbsp;of&nbsp;processors&nbsp;in&nbsp;the&nbsp;system</dd></dl><dl><dt><a name="Server-destroy" title="Server-destroy"></a><strong>destroy</strong>(self)</dt><dd>Kills&nbsp;ppworkers&nbsp;and&nbsp;closes&nbsp;open&nbsp;files</dd></dl>  <dl><dt><a name="Server-get_active_nodes" title="Server-get_active_nodes"></a><strong>get_active_nodes</strong>(self)</dt><dd>Returns&nbsp;active&nbsp;nodes&nbsp;as&nbsp;a&nbsp;dictionary&nbsp;<br />  [keys&nbsp;-&nbsp;nodes,&nbsp;values&nbsp;-&nbsp;ncpus]</dd></dl>  <dl><dt><a name="Server-get_ncpus" title="Server-get_ncpus"></a><strong>get_ncpus</strong>(self)</dt><dd>Returns&nbsp;the&nbsp;number&nbsp;of&nbsp;local&nbsp;worker&nbsp;processes&nbsp;(ppworkers)</dd></dl>  <dl><dt><a name="Server-get_stats" title="Server-get_stats"></a><strong>get_stats</strong>(self)</dt><dd>Returns&nbsp;job&nbsp;execution&nbsp;statistics&nbsp;as&nbsp;a&nbsp;dictionary</dd></dl><dl><dt><a name="Server-print_stats" title="Server-print_stats"></a><strong>print_stats</strong>(self)</dt><dd>Prints&nbsp;job&nbsp;execution&nbsp;statistics.&nbsp;Useful&nbsp;for&nbsp;benchmarking&nbsp;on&nbsp;<br />  clusters</dd></dl>  <dl><dt><a name="Server-set_ncpus" title="Server-set_ncpus"></a><strong>set_ncpus</strong>(self, ncpus<font color="#909090">=&#39;autodetect&#39;</font>)</dt><dd>Sets&nbsp;the&nbsp;number&nbsp;of&nbsp;local&nbsp;worker&nbsp;processes&nbsp;(ppworkers)<br /> &nbsp;<br />  ncpus&nbsp;-&nbsp;the&nbsp;number&nbsp;of&nbsp;worker&nbsp;processes,&nbsp;if&nbsp;parammeter&nbsp;is&nbsp;omitted<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;it&nbsp;will&nbsp;be&nbsp;set&nbsp;to&nbsp;the&nbsp;number&nbsp;of&nbsp;processors&nbsp;in&nbsp;the&nbsp;system</dd></dl>  <dl><dt><a name="Server-submit" title="Server-submit"></a><strong>submit</strong>(self, func, args<font color="#909090">=()</font>, depfuncs<font color="#909090">=()</font>, modules<font color="#909090">=()</font>, callback<font color="#909090">=None</font>, callbackargs<font color="#909090">=()</font>, group<font color="#909090">=&#39;default&#39;</font>, globals<font color="#909090">=None</font>)</dt><dd>Submits&nbsp;function&nbsp;to&nbsp;the&nbsp;execution&nbsp;queue<br />  &nbsp;<br /> func&nbsp;-&nbsp;function&nbsp;to&nbsp;be&nbsp;executed<br /> args&nbsp;-&nbsp;tuple&nbsp;with&nbsp;arguments&nbsp;of&nbsp;the&nbsp;&#39;func&#39;<br />  depfuncs&nbsp;-&nbsp;tuple&nbsp;with&nbsp;functions&nbsp;which&nbsp;might&nbsp;be&nbsp;called&nbsp;from&nbsp;&#39;func&#39;<br /> modules&nbsp;-&nbsp;tuple&nbsp;with&nbsp;module&nbsp;names&nbsp;to&nbsp;import<br />  callback&nbsp;-&nbsp;callback&nbsp;function&nbsp;which&nbsp;will&nbsp;be&nbsp;called&nbsp;with&nbsp;argument&nbsp;<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;list&nbsp;equal&nbsp;to&nbsp;callbackargs+(result,)&nbsp;<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;as&nbsp;soon&nbsp;as&nbsp;calculation&nbsp;is&nbsp;done<br />  callbackargs&nbsp;-&nbsp;additional&nbsp;arguments&nbsp;for&nbsp;callback&nbsp;function<br /> group&nbsp;-&nbsp;job&nbsp;group,&nbsp;is&nbsp;used&nbsp;when&nbsp;<a href="http://www.parallelpython.com/content/view/15/30/#Server-wait">wait</a>(group)&nbsp;is&nbsp;called&nbsp;to&nbsp;wait&nbsp;for<br />  jobs&nbsp;in&nbsp;a&nbsp;given&nbsp;group&nbsp;to&nbsp;finish<br /> globals&nbsp;-&nbsp;dictionary&nbsp;from&nbsp;which&nbsp;all&nbsp;modules,&nbsp;functions&nbsp;and&nbsp;classes<br />  will&nbsp;be&nbsp;imported,&nbsp;for&nbsp;instance:&nbsp;globals=globals()</dd></dl>  <dl><dt><a name="Server-wait" title="Server-wait"></a><strong>wait</strong>(self, group<font color="#909090">=None</font>)</dt><dd>Waits&nbsp;for&nbsp;all&nbsp;jobs&nbsp;in&nbsp;a&nbsp;given&nbsp;group&nbsp;to&nbsp;finish.<br />  If&nbsp;group&nbsp;is&nbsp;omitted&nbsp;waits&nbsp;for&nbsp;all&nbsp;jobs&nbsp;to&nbsp;finish</dd></dl>  <dl><dt><strong>default_port</strong> = 60000</dt></dl>  <dl><dt><strong>default_secret</strong> = &#39;epo20pdosl;dksldkmm&#39;</dt></dl>  </td></tr></tbody></table> </p><p> <table border="0" cellspacing="0" cellpadding="2" width="100%" summary="section"> <tbody><tr bgcolor="#ffc8d8"> <td colspan="3" valign="bottom">&nbsp;<br /> <font face="helvetica, arial" color="#000000"><a name="Template" title="Template"></a>class <strong>Template</strong></font></td></tr>      <tr bgcolor="#ffc8d8"><td rowspan="2">&nbsp;&nbsp;&nbsp;</td> <td colspan="2"><a href="http://www.parallelpython.com/content/view/15/30/#Template">Template</a>&nbsp;class<br />&nbsp;</td></tr>  <tr><td>&nbsp;</td> <td width="100%">Methods defined here:<br /> <dl><dt><a name="Template-__init__" title="Template-__init__"></a><strong>__init__</strong>(self, job_server, func, depfuncs<font color="#909090">=()</font>, modules<font color="#909090">=()</font>, callback<font color="#909090">=None</font>, callbackargs<font color="#909090">=()</font>, group<font color="#909090">=&#39;default&#39;</font>, globals<font color="#909090">=None</font>)</dt><dd>Creates&nbsp;<a href="http://www.parallelpython.com/content/view/15/30/#Template">Template</a>&nbsp;instance<br />  &nbsp;<br /> jobs_server&nbsp;-&nbsp;pp&nbsp;server&nbsp;for&nbsp;submitting&nbsp;jobs<br /> func&nbsp;-&nbsp;function&nbsp;to&nbsp;be&nbsp;executed<br /> depfuncs&nbsp;-&nbsp;tuple&nbsp;with&nbsp;functions&nbsp;which&nbsp;might&nbsp;be&nbsp;called&nbsp;from&nbsp;&#39;func&#39;<br />  modules&nbsp;-&nbsp;tuple&nbsp;with&nbsp;module&nbsp;names&nbsp;to&nbsp;import<br /> callback&nbsp;-&nbsp;callback&nbsp;function&nbsp;which&nbsp;will&nbsp;be&nbsp;called&nbsp;with&nbsp;argument&nbsp;<br />  &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;list&nbsp;equal&nbsp;to&nbsp;callbackargs+(result,)&nbsp;<br /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;as&nbsp;soon&nbsp;as&nbsp;calculation&nbsp;is&nbsp;done<br /> callbackargs&nbsp;-&nbsp;additional&nbsp;arguments&nbsp;for&nbsp;callback&nbsp;function<br />  group&nbsp;-&nbsp;job&nbsp;group,&nbsp;is&nbsp;used&nbsp;when&nbsp;wait(group)&nbsp;is&nbsp;called&nbsp;to&nbsp;wait&nbsp;for<br /> jobs&nbsp;in&nbsp;a&nbsp;given&nbsp;group&nbsp;to&nbsp;finish<br />  globals&nbsp;-&nbsp;dictionary&nbsp;from&nbsp;which&nbsp;all&nbsp;modules,&nbsp;functions&nbsp;and&nbsp;classes<br /> will&nbsp;be&nbsp;imported,&nbsp;for&nbsp;instance:&nbsp;globals=globals()</dd></dl>  <dl><dt><a name="Template-submit" title="Template-submit"></a><strong>submit</strong>(self, *args)</dt><dd>Submits&nbsp;function&nbsp;with&nbsp;*arg&nbsp;arguments&nbsp;to&nbsp;the&nbsp;execution&nbsp;queue</dd></dl>   </td></tr></tbody></table></p><p> <table border="0" cellspacing="0" cellpadding="2" width="100%" summary="section">  <tbody><tr bgcolor="#55aa55"> <td colspan="3" valign="bottom">&nbsp;<br /> <font face="helvetica, arial" color="#ffffff"><strong>Data</strong></font></td></tr>      <tr><td bgcolor="#55aa55">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</td><td>&nbsp;</td> <td width="100%"><strong>copyright</strong> = &#39;Copyright (c) 2005-2012 Vitalii Vanovschi. All rights reserved&#39;<br /> <strong>version</strong> = &#39;1.6.2&#39;</td></tr></tbody></table>      </p><hr /><h1 id="QUICKSMP">&nbsp; Quick start guide, SMP<br /></h1> <p>1) Import pp module:</p><p><strong>&nbsp;&nbsp;&nbsp; import pp</strong></p><p>2) Start pp execution server with the number of workers set to&nbsp;the&nbsp;number&nbsp;of&nbsp;processors&nbsp;in&nbsp;the&nbsp;system </p><p><strong>&nbsp;&nbsp;&nbsp; job_server = pp.Server()&nbsp;</strong></p><p>3) Submit all the tasks for parallel execution:</p><p><strong>&nbsp;&nbsp;&nbsp; f1 = job_server.submit(func1, args1, depfuncs1, modules1)</strong></p><p><strong>&nbsp;&nbsp;&nbsp; f2 = job_server.submit(func1, args2, depfuncs1, modules1) </strong></p><p><strong>&nbsp;&nbsp;&nbsp; f3 = job_server.submit(func2, args3, depfuncs2, modules2) </strong><br /> </p><p>&nbsp;&nbsp; ...etc...<br /></p><p>4) Retrieve the results as needed:</p><p><strong>&nbsp;&nbsp;&nbsp; r1 = f1()</strong></p><p><strong>&nbsp;&nbsp;&nbsp; r2 = f2()</strong></p><p><strong>&nbsp;&nbsp;&nbsp; r3 = f3()&nbsp;</strong> </p><p>&nbsp;&nbsp;&nbsp; ...etc...</p><p>&nbsp;To find out how to achieve efficient parallelization with pp please take a look at <a href="content/view/17/31/" title="Parallel Python Implementation Examples">examples</a> </p> <hr /><h1 id="QUICKCLUSTERS">&nbsp; Quick start guide, clusters&nbsp; </h1><p><em><strong>On the nodes</strong></em> <br /></p><p>1) Start parallel python execution server on all your remote computational nodes:</p><p><strong>&nbsp;&nbsp;&nbsp; node-1&gt; ./ppserver.py </strong></p><p><strong>&nbsp;&nbsp;&nbsp; node-2&gt; ./ppserver.py</strong></p><p><strong>&nbsp;&nbsp;&nbsp; node-3&gt; ./ppserver.py</strong></p><p><em><strong>On the client</strong></em> <br /></p><p>2) Import pp module:</p><p><strong>&nbsp;&nbsp;&nbsp; import pp</strong></p><p>3)&nbsp; Create a list of all the nodes in your cluster (computers where you&#39;ve run ppserver.py) </p><p><strong>&nbsp;&nbsp;&nbsp; ppservers=(&quot;node-1&quot;, &quot;node-2&quot;, &quot;node-3&quot;)</strong><br /></p><p>4) Start pp execution server with the number of workers set to&nbsp;the&nbsp;number&nbsp;of&nbsp;processors&nbsp;in&nbsp;the&nbsp;system and list of ppservers to connect with :</p><p><strong>&nbsp;&nbsp;&nbsp; job_server = pp.Server(</strong><strong>ppservers=</strong><strong>ppservers</strong><strong>)&nbsp;</strong></p><p>5) Submit all the tasks for parallel execution:</p><p><strong>&nbsp;&nbsp;&nbsp; f1 = job_server.submit(func1, args1, depfuncs1, modules1)</strong></p><p><strong>&nbsp;&nbsp;&nbsp; f2 = job_server.submit(func1, args2, depfuncs1, modules1) </strong></p><p><strong>&nbsp;&nbsp;&nbsp; f3 = job_server.submit(func2, args3, depfuncs2, modules2) </strong><br /> </p><p>&nbsp;&nbsp; ...etc...<br /></p><p>6) Retrieve the results as needed:</p><p><strong>&nbsp;&nbsp;&nbsp; r1 = f1()</strong></p><p><strong>&nbsp;&nbsp;&nbsp; r2 = f2()</strong></p><p><strong>&nbsp;&nbsp;&nbsp; r3 = f3()&nbsp;</strong> </p><p>&nbsp;&nbsp;&nbsp; ...etc...</p><p>&nbsp;To find out how to achieve efficient parallelization with pp please take a look at <a href="content/view/17/31/" title="Parallel Python Implementation Examples">examples</a></p> <hr /><h1 id="QUICKCLUSTERSAUTO">&nbsp; Quick start guide, clusters with autodiscovery<br /> </h1><p><em><strong>On the nodes</strong></em>&nbsp;</p><p>1) Start parallel python execution server on all your remote computational nodes:</p><p><strong>&nbsp;&nbsp;&nbsp; node-1&gt; ./ppserver.py -a<br /> </strong></p><p><strong>&nbsp;&nbsp;&nbsp; node-2&gt; ./ppserver.py -a</strong></p><p><strong>&nbsp;&nbsp;&nbsp; node-3&gt; ./ppserver.py -a<br /></strong></p><p><em><strong>On the client</strong></em></p><p>2) Import pp module:</p><p><strong>&nbsp;&nbsp;&nbsp; import pp</strong></p><p>3)&nbsp; Set ppservers list to auto-discovery: </p><p><strong>&nbsp;&nbsp;&nbsp; ppservers=(&quot;*&quot;,)</strong><br /></p><p>4) Start pp execution server with the number of workers set to&nbsp;the&nbsp;number&nbsp;of&nbsp;processors&nbsp;in&nbsp;the&nbsp;system and list of ppservers to connect with :</p><p><strong>&nbsp;&nbsp;&nbsp; job_server = pp.Server(</strong><strong>ppservers=</strong><strong>ppservers</strong><strong>)&nbsp;</strong></p><p>5) Submit all the tasks for parallel execution:</p><p><strong>&nbsp;&nbsp;&nbsp; f1 = job_server.submit(func1, args1, depfuncs1, modules1)</strong></p><p><strong>&nbsp;&nbsp;&nbsp; f2 = job_server.submit(func1, args2, depfuncs1, modules1) </strong></p><p><strong>&nbsp;&nbsp;&nbsp; f3 = job_server.submit(func2, args3, depfuncs2, modules2) </strong><br /> </p><p>&nbsp;&nbsp; ...etc...<br /></p><p>6) Retrieve the results as needed:</p><p><strong>&nbsp;&nbsp;&nbsp; r1 = f1()</strong></p><p><strong>&nbsp;&nbsp;&nbsp; r2 = f2()</strong></p><p><strong>&nbsp;&nbsp;&nbsp; r3 = f3()&nbsp;</strong> </p><p>&nbsp;&nbsp;&nbsp; ...etc...</p><p>&nbsp;To find out how to achieve efficient parallelization with pp please take a look at <a href="content/view/17/31/" title="Parallel Python Implementation Examples">examples</a>&nbsp; </p><hr /><h1 id="ADVANCEDCLUSTERS">&nbsp;&nbsp;&nbsp; Advanced guide, clusters&nbsp; </h1> <p><em><strong>On the nodes</strong></em> &nbsp;</p><p>1) Start parallel python execution server on all your remote computational nodes (listen to a given port 35000,<br /> and local network interface only, accept only connections which know correct secret):</p><p><strong>&nbsp;&nbsp;&nbsp; node-1&gt; ./ppserver.py -p 35000 -i 192.168.0.101 -s &quot;mysecret&quot;<br /></strong></p><p><strong>&nbsp;&nbsp;&nbsp; node-2&gt; ./ppserver.py -p 35000 -i 192.168.0.102</strong><strong> -s &quot;mysecret&quot;</strong></p><p><strong>&nbsp;&nbsp;&nbsp; node-3&gt; ./ppserver.py -p 35000 -i 192.168.0.103</strong><strong> -s &quot;mysecret&quot;</strong></p><p><em><strong>On the client</strong></em> <br /></p> <p>2) Import pp module:</p><p><strong>&nbsp;&nbsp;&nbsp; import pp</strong></p><p>3)&nbsp; Create a list of all the nodes in your cluster (computers where you&#39;ve run ppserver.py) </p><p><strong>&nbsp;&nbsp;&nbsp; ppservers=(&quot;node-1:35000&quot;, &quot;node-2:</strong><strong>35000</strong><strong>&quot;, &quot;node-3:</strong><strong>35000</strong><strong>&quot;)</strong><br /></p><p>4) Start pp execution server with the number of workers set to&nbsp;the&nbsp;number&nbsp;of&nbsp;processors&nbsp;in&nbsp;the&nbsp;system, <br />list of ppservers to connect with and secret key to authorize the connection:</p><p><strong>&nbsp;&nbsp;&nbsp; job_server = pp.Server(</strong><strong>ppservers=</strong><strong>ppservers</strong><strong>, secret=&quot;</strong><strong>mysecret</strong><strong>&quot;)&nbsp;</strong></p><p>5) Submit all the tasks for parallel execution:</p><p><strong>&nbsp;&nbsp;&nbsp; f1 = job_server.submit(func1, args1, depfuncs1, modules1)</strong></p><p><strong>&nbsp;&nbsp;&nbsp; f2 = job_server.submit(func1, args2, depfuncs1, modules1) </strong></p><p><strong>&nbsp;&nbsp;&nbsp; f3 = job_server.submit(func2, args3, depfuncs2, modules2) </strong><br /> </p><p>&nbsp;&nbsp; ...etc...<br /></p><p>6) Retrieve the results as needed:</p><p><strong>&nbsp;&nbsp;&nbsp; r1 = f1()</strong></p><p><strong>&nbsp;&nbsp;&nbsp; r2 = f2()</strong></p><p><strong>&nbsp;&nbsp;&nbsp; r3 = f3()&nbsp;</strong> </p><p>&nbsp;&nbsp;&nbsp; ...etc...</p><p>&nbsp;7) Print the execution statistics:<br /></p><p><strong>&nbsp;&nbsp;&nbsp; job_server.print_stats()</strong></p><p>To find out how to achieve efficient parallelization with pp please take a look at <a href="content/view/17/31/" title="Parallel Python Implementation Examples">examples</a> </p><hr /><h1 id="COMMANDLINE">&nbsp; Command line options, ppserver.py </h1> <pre>Usage: ppserver.py [-hda] [-i interface] [-b broadcast] [-p port] [-w nworkers] [-s secret] [-t seconds]<br /> Options:<br /> -h                 : this help message<br /> -d                 : debug<br /> -a                 : enable auto-discovery service<br /> -i interface       : interface to listen<br /> -b broadcast       : broadcast address for auto-discovery service<br /> -p port            : port to listen<br /> -w nworkers        : number of workers to start<br /> -s secret          : secret for authentication<br /> -t seconds         : timeout to exit if no connections with clients exist<br /> -k seconds         : socket timeout in seconds  <br /></pre><hr /><h1 id="COMMANDLINE">&nbsp; Security and secret key<a name="SECURITY" title="SECURITY"></a></h1><p>&nbspDue to the security concerns, in Debian we decided to disable default password authentication, and require to run <strong>ppserver</strong> with a non-trivial secret key (<trong>-s</strong> command line argument) which should be paired with the matching <em>secret</em> keyword of PP Server class constructor. An alternative way to set a secret key is by assigning <strong>pp_secret</strong> variable in the configuration file <strong>.pythonrc.py</strong> which should be located in the user home directory (please make this file readable and writable only by user). The secret key set in <strong>.pythonrc.py</strong> could be overridden by command line argument (for <strong>ppserver</strong>) and <em>secret</em> keyword (for PP Server class constructor). Note that passing the password on the command line allows every user to see it (e.g. using <strong>ps(1)</strong>), and that running it on an open/untrusted network can be a security problem as traffic, including the password, is not encrypted.</p>

			</td>
 		</tr>
 				</table>
 		
Index: parallelpython-1.6.2/pp.py
===================================================================
--- parallelpython-1.6.2.orig/pp.py	2012-06-03 09:35:53.000000000 +0200
+++ parallelpython-1.6.2/pp.py	2012-06-07 22:18:28.186360649 +0200
@@ -277,7 +277,6 @@
     """
 
     default_port = 60000
-    default_secret = "epo20pdosl;dksldkmm"
 
     def __init__(self, ncpus="autodetect", ppservers=(), secret=None,
             restart=False, proto=2, socket_timeout=3600):
@@ -288,9 +287,8 @@
                    the number of processors in the system
            ppservers - list of active parallel python execution servers
                    to connect with
-           secret - passphrase for network connections, if omitted a default
-                   passphrase will be used. It's highly recommended to use a
-                   custom passphrase for all network connections.
+           secret - passphrase for network connections; it can be set via
+                   command-line or configuration file
            restart - whether to restart worker process after each task completion
            proto - protocol number for pickle module
            socket_timeout - socket timeout in seconds which is also the maximum 
@@ -372,7 +370,7 @@
                 raise TypeError("secret must be of a string type")
             self.secret = str(secret)
         else:
-            self.secret = Server.default_secret
+            raise ValueError("secret must be set using command-line option or configuration file")
         self.__connect()
         self.__creation_time = time.time()
         self.logger.info("pp local server started with %d workers"