1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
Require Import Parametricity.
Require Import List.
Import ListNotations.
Definition bind_option {A B} (f : A -> option B) (x : option A) :
option B :=
match x with
| Some x => f x
| None => None
end.
Notation "'do' X <- A 'in' B" := (bind_option (fun X => B) A)
(at level 200, X ident, A at level 100, B at level 200).
Definition bind_option2 {A B C} (f : A -> B -> option C)
(x : option (A * B)) : option C :=
do yz <- x in let (y, z) := yz : A * B in f y z.
Notation "'do' X , Y <- A 'in' B" := (bind_option2 (fun X Y => B) A)
(at level 200, X ident, Y ident, A at level 100, B at level 200).
Require Import List.
Record Queue := {
t :> Type;
empty : t;
push : nat -> t -> t;
pop : t -> option (nat * t)
}.
Definition program (Q : Queue) (n : nat) : option nat :=
(* q := 0::1::2::...::n *)
let q : Q :=
nat_rect (fun _ => Q) Q.(empty) Q.(push) (S n)
in
let q : option Q := nat_rect (fun _ => option Q) (Some q)
(fun _ (q : option Q) =>
do q <- q in
do x, q <- Q.(pop) q in
do y, q <- Q.(pop) q in
Some (Q.(push) (x + y) q)) n
in
do q <- q in
option_map fst (Q.(pop) q).
Definition ListQueue := {|
t := list nat;
empty := nil;
push := @cons nat;
pop := fun l =>
match rev l with
| nil => None
| hd :: tl => Some (hd, rev tl) end
|}.
Definition DListQueue := {|
t := list nat * list nat;
empty := (nil, nil);
push x l :=
let (back, front) := l in
(cons x back,front);
pop := fun l =>
let (back, front) := l in
match front with
| [] =>
match rev back with
| [] => None
| hd :: tl => Some (hd, (nil, tl))
end
| hd :: tl => Some (hd, (back, tl))
end
|}.
Parametricity Recursive nat.
Print nat_R.
Lemma nat_R_equal :
forall x y, nat_R x y -> x = y.
intros x y H; induction H; subst; trivial.
Defined.
Lemma equal_nat_R :
forall x y, x = y -> nat_R x y.
intros x y H; subst.
induction y; constructor; trivial.
Defined.
Parametricity Recursive option.
Lemma option_nat_R_equal :
forall x y, option_R nat nat nat_R x y -> x = y.
intros x1 x2 H; destruct H as [x1 x2 x_R | ].
rewrite (nat_R_equal _ _ x_R); reflexivity.
reflexivity.
Defined.
Lemma equal_option_nat_R :
forall x y, x = y -> option_R nat nat nat_R x y.
intros x y H; subst.
destruct y; constructor; apply equal_nat_R; reflexivity.
Defined.
Parametricity Recursive prod.
Parametricity Recursive Queue.
Print Queue_R.
Check Queue_R.
Notation Bisimilar := Queue_R.
Print Queue_R.
Definition R (l1 : list nat) (l2 : list nat * list nat) :=
let (back, front) := l2 in
l1 = back ++ rev front.
Lemma rev_app :
forall A (l1 l2 : list A),
rev (l1 ++ l2) = rev l2 ++ rev l1.
induction l1.
intro; symmetry; apply app_nil_r.
intro; simpl; rewrite IHl1; rewrite app_ass.
reflexivity.
Defined.
Lemma rev_list_rect A :
forall P:list A-> Type,
P [] ->
(forall (a:A) (l:list A), P (rev l) -> P (rev (a :: l))) ->
forall l:list A, P (rev l).
Proof.
induction l; auto.
Defined.
Theorem rev_rect A :
forall P:list A -> Type,
P [] ->
(forall (x:A) (l:list A), P l -> P (l ++ [x])) ->
forall l:list A, P l.
Proof.
intros.
generalize (rev_involutive l).
intros E; rewrite <- E.
apply (rev_list_rect _ P).
auto.
simpl.
intros.
apply (X0 a (rev l0)).
auto.
Defined.
Lemma bisim_list_dlist : Bisimilar ListQueue DListQueue.
apply (Queue_R_Build_Queue_R _ _ R).
* reflexivity.
* intros n1 n2 n_R.
pose (nat_R_equal _ _ n_R) as H.
destruct H. clear n_R.
intros l [back front].
unfold R.
simpl.
intro; subst.
simpl.
reflexivity.
* intros l [back front].
generalize l. clear l.
unfold R; fold R.
pattern back.
apply rev_rect.
intros l H; subst.
rewrite rev_app.
simpl.
rewrite app_nil_r.
rewrite rev_involutive.
destruct front.
constructor.
repeat constructor.
apply equal_nat_R; reflexivity.
clear back; intros hd back IHR l H.
subst.
rewrite rev_app.
rewrite rev_involutive.
rewrite rev_app.
simpl.
destruct front.
simpl.
repeat constructor.
apply equal_nat_R; reflexivity.
simpl.
repeat constructor.
apply equal_nat_R; reflexivity.
unfold R.
rewrite rev_app.
simpl.
rewrite rev_involutive.
reflexivity.
Defined.
Print program.
Check program.
Parametricity Recursive program.
Check program_R.
Lemma program_independent :
forall n,
program ListQueue n = program DListQueue n.
intro n.
apply option_nat_R_equal.
apply program_R.
apply bisim_list_dlist.
apply equal_nat_R.
reflexivity.
Defined.
Print program.
Print program_R.
|