1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
|
Declare ML Module "coq-paramcoq.plugin".
Require Import NPeano.
Require Import Recdef.
Set Implicit Arguments.
Require Import Lia.
Fixpoint subS (n m : nat) {struct n} : nat :=
match n return nat with
| 0 => 0 (* originally n*)
| S k => match m return nat with
| 0 => S k (* originally n*)
| S l => subS k l
end
end.
Definition modS :=
fun x y : nat => match y with
| 0 => match (1 mod 0) with | 0 => 0 | _ => x end
| S y' => subS y' (snd (divmod x y' 0 y'))
end.
Lemma subS_same : forall n m, subS n m = Nat.sub n m.
Proof.
induction n; destruct m; simpl; auto.
Defined.
Lemma modS_same : forall n m, modS n m = Nat.modulo n m.
Proof.
destruct m; simpl; auto.
rewrite subS_same. reflexivity.
Defined.
Function GcdS (a b : nat) {wf lt a} : nat :=
match a with
| O => b
| S k => GcdS (modS b (S k)) (S k)
end.
Proof.
- intros m n k Heq. rewrite modS_same.
simpl.
lia.
- exact Wf_nat.lt_wf.
Defined.
Ltac destruct_reflexivity :=
intros ; repeat match goal with
| [ x : _ |- _ = _ ] => destruct x; reflexivity; fail
end.
Ltac destruct_construct x :=
(destruct x; [ constructor 1 ]; auto; fail)
|| (destruct x; [ constructor 1 | constructor 2 ]; auto; fail)
|| (destruct x; [ constructor 1 | constructor 2 | constructor 3]; auto; fail).
Ltac unfold_cofix := intros; match goal with
[ |- _ = ?folded ] =>
let x := fresh "x" in
let typ := type of folded in
(match folded with _ _ => pattern folded | _ => pattern folded at 2 end);
match goal with [ |- ?P ?x ] =>
refine (let rebuild : typ -> typ := _ in
let path : rebuild folded = folded := _ in
eq_rect _ P _ folded path) end;
[ intro x ; destruct_construct x; fail
| destruct folded; reflexivity
| reflexivity]; fail
end.
Ltac destruct_with_nat_arg_pattern x :=
pattern x;
match type of x with
| ?I 0 => refine (let gen : forall m (q : I m),
(match m return I m -> Type with
0 => fun p => _ p
| S n => fun _ => unit end q) := _ in gen 0 x)
| ?I (S ?n) => refine (let gen : forall m (q : I m),
(match m return I m -> Type with
0 => fun _ => unit
| S n => fun p => _ p end q) := _ in gen (S n) x)
end; intros m q; destruct q.
Ltac destruct_reflexivity_with_nat_arg_pattern :=
intros ; repeat match goal with
| [ x : _ |- _ = _ ] => destruct_with_nat_arg_pattern x; reflexivity; fail
end.
Global Parametricity Tactic := ((destruct_reflexivity; fail)
|| (unfold_cofix; fail)
|| (destruct_reflexivity_with_nat_arg_pattern; fail)
|| auto).
Require Import ProofIrrelevance.
(* Parametricity Recursive GcdS qualified. *) (* FIXME *)
(*
DepRefs:
nat
le
lt
prod
snd
subS
Init.Nat.divmod
modS
GcdS_F
Recdef.iter
and
iff
Basics.impl
unit
Init.Unconvertible
Relation_Definitions.relation
Morphisms.Proper
RelationClasses.subrelation
Morphisms.subrelation_proper
eq
eq_rect
eq_ind
eq_sym
eq_ind_r
PeanoNat.Nat.succ_wd_obligation_1
Nat.succ_wd
Morphisms.subrelation_refl
Morphisms.respectful
RelationClasses.Transitive
RelationClasses.transitivity
Morphisms.trans_co_impl_morphism_obligation_1
Morphisms.trans_co_impl_morphism
RelationClasses.Symmetric
RelationClasses.Reflexive
RelationClasses.Equivalence
RelationClasses.Equivalence_Transitive
RelationClasses.PER
RelationClasses.PER_Symmetric
RelationClasses.symmetry
RelationClasses.PER_Transitive
Morphisms.PER_morphism_obligation_1
Morphisms.PER_morphism
Init.Nat.pred
RelationClasses.Equivalence_Symmetric
RelationClasses.Equivalence_PER
Nat.pred_succ
Morphisms.reflexive_proper_proxy
and_rect
and_ind
Morphisms.iff_impl_subrelation
PeanoNat.Nat.pred_wd_obligation_1
Nat.pred_wd
RelationClasses.Equivalence_Reflexive
Morphisms.subrelation_respectful
RelationClasses.eq_Reflexive
eq_trans
RelationClasses.eq_Transitive
RelationClasses.eq_Symmetric
RelationClasses.eq_equivalence
Nat.eq_equiv
Nat.succ_inj
Nat.succ_inj_wd
Morphisms.ProperProxy
Morphisms.Reflexive_partial_app_morphism
False
False_rect
False_ind
not
iff_sym
RelationClasses.iff_Symmetric
iff_trans
RelationClasses.iff_Transitive
iff_refl
RelationClasses.iff_Reflexive
RelationClasses.iff_equivalence
Morphisms.per_partial_app_morphism_obligation_1
Morphisms.per_partial_app_morphism
Morphisms.trans_sym_co_inv_impl_morphism_obligation_1
Morphisms.trans_sym_co_inv_impl_morphism
Basics.flip
RelationClasses.reflexivity
comparison
Init.Nat.compare
or
or_ind
Morphisms.trans_co_eq_inv_impl_morphism_obligation_1
Morphisms.trans_co_eq_inv_impl_morphism
Morphisms.eq_proper_proxy
Morphisms_Prop.or_iff_morphism_obligation_1
Morphisms_Prop.or_iff_morphism
nat_rect
nat_ind
f_equal
f_equal_nat
eq_add_S
True
Nat.compare_eq_iff
Peano.le_0_n
le_ind
Peano.le_pred
Peano.le_S_n
Peano.le_n_S
Nat.compare_le_iff
Nat.compare_lt_iff
Nat.lt_eq_cases
Nat.le_refl
Morphisms.iff_flip_impl_subrelation
Nat.lt_succ_r
Nat.lt_succ_diag_r
PeanoNat.Nat.lt_wd_obligation_1
Nat.lt_wd
Nat.compare_refl
Morphisms_Prop.not_iff_morphism_obligation_1
Morphisms_Prop.not_iff_morphism
Nat.lt_irrefl
Nat.neq_succ_diag_l
Nat.lt_le_incl
Nat.nlt_succ_diag_l
Nat.nle_succ_diag_l
Nat.bi_induction
Morphisms_Prop.iff_iff_iff_impl_morphism_obligation_1
Morphisms_Prop.iff_iff_iff_impl_morphism
Nat.central_induction
Nat.le_wd
or_iff_compat_r
or_cancel_r
Nat.le_succ_l
Nat.succ_lt_mono
lt_S_n
Acc
Acc_inv
positive
BinPosDef.Pos.succ
BinPosDef.Pos.of_succ_nat
Z
BinIntDef.Z.of_nat
Decidable.decidable
Decidable.dec_not_not
BinPosDef.Pos.pred_double
BinIntDef.Z.pred_double
BinIntDef.Z.double
BinIntDef.Z.succ_double
BinIntDef.Z.pos_sub
BinPosDef.Pos.add
BinIntDef.Z.add
Morphisms.reflexive_proper
Z.eq
Morphisms.reflexive_eq_dom_reflexive
Z.add_wd
Z.eq_equiv
BinIntDef.Z.succ
Z.succ_wd
BinIntDef.Z.pred
BinIntDef.Z.opp
BinPosDef.Pos.compare_cont
BinPosDef.Pos.compare
BinPosDef.Pos.mask
BinPosDef.Pos.double_pred_mask
BinPosDef.Pos.double_mask
BinPosDef.Pos.succ_double_mask
BinPosDef.Pos.sub_mask
Pos.mask2cmp
BinPosDef.Pos.pred
BinPosDef.Pos.pred_mask
BinPosDef.Pos.sub_mask_carry
positive_rect
positive_ind
Pos.sub_mask_carry_spec
Pos.switch_Eq
Pos.compare_cont_spec
Pos.compare_xI_xO
Pos.compare_xO_xI
Pos.compare_sub_mask
BinPosDef.Pos.add_carry
Pos.add_carry_spec
Pos.add_comm
Pos.add_1_r
Pos.add_succ_r
Pos.add_succ_l
Pos.add_1_l
Pos.add_assoc
Pos.succ_pred_double
Pos.add_xI_pred_double
Pos.SubMaskSpec
Pos.sub_mask_spec
Pos.sub_mask_nul_iff
Pos.compare_eq_iff
Pos.eq_equiv
Pos.compare_refl
Pos.sub_mask_diag
Pos.compare_xI_xI
Pos.compare_xO_xO
Pos.lt
Pos.compare_lt_iff
CompOpp
Pos.compare_cont_antisym
Pos.compare_antisym
CompOpp_involutive
CompOpp_inj
CompOpp_iff
CompareSpec
Pos.compare_spec
Pos.add_no_neutral
Pos.sub_mask_add_diag_r
ex
Pos.sub_mask_neg_iff
Pos.lt_iff_add
Pos.succ_not_1
Pos.succ_inj
Pos.add_carry_add
not_eq_sym
Pos.add_reg_r
Pos.add_reg_l
Pos.add_cancel_l
Pos.sub_mask_add_diag_l
Pos.sub_mask_add
Pos.sub_mask_pos_iff
Pos.sub_mask_pos'
Pos.sub_mask_pos
BinPosDef.Pos.sub
Pos.sub_xI_xI
Pos.sub_xI_xO
Pos.sub_xO_xI
Pos.sub_xO_xO
Z.pos_sub_spec
Z.pos_sub_diag
Z.Private_BootStrap.add_opp_diag_r
Z.pos_sub_opp
Z.Private_BootStrap.opp_add_distr
Pos.peano_rect
Pos.peano_ind
Pos.compare_succ_r
Pos.compare_succ_l
Pos.compare_succ_succ
Pos.add_compare_mono_l
Pos.add_compare_mono_r
Pos.lt_trans
Pos.add_lt_mono_l
Pos.lt_succ_diag_r
Pos.lt_add_r
Pos.sub_add
Pos.add_sub_assoc
Pos.add_lt_mono_r
Pos.sub_add_distr
Pos.add_sub
Pos.sub_sub_distr
Pos.gt
Pos.gt_lt_iff
Pos.lt_gt
Z.Private_BootStrap.pos_sub_add
Z.Private_BootStrap.opp_inj
Z.Private_BootStrap.add_comm
Z.Private_BootStrap.add_0_r
Z.Private_BootStrap.add_assoc_pos
Z.Private_BootStrap.add_assoc
Z.pred_succ
Z.pred_wd
Z.succ_inj
Z.succ_inj_wd
Z.add_succ_l
Z.add_0_l
Z.succ_pred
Z.peano_ind
Z.bi_induction
Z.add_assoc
fast_Zplus_assoc
lt_n_S
nat_rec
gt
lt_le_S
gt_le_S
all
Morphisms.pointwise_relation
Morphisms_Prop.all_iff_morphism_obligation_1
Morphisms_Prop.all_iff_morphism
RelationClasses.complement
RelationClasses.Irreflexive
RelationClasses.StrictOrder
RelationClasses.StrictOrder_Transitive
Nat.lt_asymm
Nat.lt_trans
Nat.lt_strorder
Nat.Private_OrderTac.IsTotal.lt_strorder
Nat.le_lteq
Nat.Private_OrderTac.IsTotal.le_lteq
Nat.lt_compat
Nat.Private_OrderTac.IsTotal.lt_compat
OrdersTac.ord
OrdersTac.trans_ord
Nat.Private_OrderTac.IsTotal.eq_equiv
Nat.Private_OrderTac.Tac.interp_ord
Nat.Private_OrderTac.Tac.trans
Nat.Private_OrderTac.Tac.lt_trans
RelationClasses.StrictOrder_Irreflexive
Nat.Private_OrderTac.Tac.lt_irrefl
Nat.le_gt_cases
Nat.lt_trichotomy
Nat.lt_total
Nat.Private_OrderTac.IsTotal.lt_total
Nat.Private_OrderTac.Tac.not_gt_le
Nat.le_le_succ_r
Nat.Private_OrderTac.Tac.le_lt_trans
Nat.le_succ_r
Nat.lt_exists_pred_strong
Nat.lt_exists_pred
Nat.rs_rs'
Nat.A'A_right
Nat.le_ngt
Nat.rbase
Nat.lt_lt_succ_r
Nat.rs'_rs''
Nat.strong_right_induction
Nat.right_induction
Nat.Private_OrderTac.Tac.lt_eq
Nat.eq_le_incl
Nat.pred_0
Nat.neq_succ_0
Nat.le_0_l
Nat.induction
Nat.lt_0_succ
le_n_S
sumbool
sumbool_rect
sumbool_rec
le_lt_dec
le_gt_dec
Zplus_assoc_reverse
fast_Zplus_assoc_reverse
Nat.Private_OrderTac.Tac.not_ge_lt
Nat.lt_le_trans
ltof
lt_n_Sm_le
Nat.nlt_0_r
well_founded
well_founded_ltof
lt_wf
N
BinNatDef.N.sub
Init.Nat.sub
BinNatDef.N.of_nat
Init.Nat.add
BinPosDef.Pos.iter_op
BinPosDef.Pos.to_nat
BinNatDef.N.to_nat
BinPosDef.Pos.of_nat
Pos.of_nat_succ
Pos.iter_op_succ
Nat.add_succ_l
Nat.add_0_l
PeanoNat.Nat.add_wd_obligation_1
Nat.add_wd
Nat.add_assoc
Pos2Nat.inj_succ
Nat2Pos.id
SuccNat2Pos.id_succ
Nnat.Nat2N.id
BinNatDef.N.compare
Pos2Nat.is_succ
Pos.le
Pos.le_1_l
Pos.lt_succ_r
Pos.lt_1_succ
Pos.succ_pred_or
Nat.compare_succ
Pos2Nat.inj_1
Nat.compare_antisym
Nat.compare_gt_iff
Pos2Nat.is_pos
Pos2Nat.inj_compare
Nnat.N2Nat.inj_compare
Nnat.Nat2N.inj_compare
nat_compare_le
BinIntDef.Z.of_N
nat_N_Z
BinIntDef.Z.sub
BinIntDef.Z.compare
Z.compare_sub
N.le
N2Z.inj_compare
N.compare_antisym
BinIntDef.Z.max
N2Z.inj_sub_max
N2Z.inj_sub
Nat.sub_0_r
Pos.sub_mask_neg_iff'
Pos.sub_mask_neg
Pos2Nat.inj_add
PeanoNat.Nat.sub_wd_obligation_1
Nat.sub_wd
Nat.sub_succ_r
Nat.sub_0_l
Nat.nle_succ_0
Nat.succ_le_mono
Nat.sub_succ
Nat.case_analysis
Nat.double_induction
Nat.sub_0_le
Nat.sub_diag
Nat.add_succ_r
Nat.add_0_r
Nat.add_comm
Nat.lt_ind
Nat.lt_succ_l
Nat.lt_ind_rel
Nat.sub_gt
Nat.add_pred_l
Nat.add_pred_r
Nat.add_sub_assoc
Nat.add_sub
Nat.add_sub_eq_l
Pos2Nat.inj_lt
Nnat.N2Nat.inj_sub
Pos2Nat.id
Pos2Nat.inj
Nnat.N2Nat.id
Nnat.N2Nat.inj
Nnat.Nat2N.inj_sub
Nat2Z.inj_sub
BinPosDef.Pos.mul
BinIntDef.Z.mul
Z.mul_wd
Z.Private_BootStrap.mul_1_l
Pos.mul_1_r
Pos.mul_xI_r
Pos.mul_xO_r
Pos.mul_comm
Pos.mul_add_distr_l
Pos.mul_add_distr_r
Pos.add_lt_mono
Pos.gt_lt
Pos.mul_compare_mono_l
Pos.mul_lt_mono_l
Pos.mul_sub_distr_l
Pos.mul_sub_distr_r
Pos.mul_compare_mono_r
Z.Private_BootStrap.mul_add_distr_pos
Z.Private_BootStrap.mul_0_r
Z.Private_BootStrap.mul_opp_r
Z.Private_BootStrap.mul_add_distr_r
Z.mul_succ_l
Z.add_succ_r
Z.add_0_r
Z.add_comm
Z.add_cancel_l
Z.add_cancel_r
Z.mul_0_l
Z.mul_succ_r
Z.one_succ
Z.add_1_l
Zred_factor3
fast_Zred_factor3
Z.mul_0_r
Zred_factor5
fast_Zred_factor5
Z.le
Z.lt
Z.compare_eq_iff
Z.compare_le_iff
Z.compare_lt_iff
Z.lt_eq_cases
Z.lt_wd
Z.compare_refl
Z.lt_irrefl
Z.sub_succ_r
Z.lt_succ_r
Z.lt_le_incl
Z.central_induction
Z.le_refl
Z.lt_succ_diag_r
Z.neq_succ_diag_l
Z.nlt_succ_diag_l
Z.nle_succ_diag_l
Z.le_wd
Z.le_succ_l
Z.lt_asymm
Z.lt_trans
Z.le_trans
RelationClasses.PreOrder
Z.le_preorder
RelationClasses.PreOrder_Reflexive
Nat2Z.is_nonneg
Z.mul_1_r
intro_Z
Z.pred_inj
Z.pred_inj_wd
Z.opp_wd
Z.add_pred_l
Z.opp_succ
Z.opp_0
Z.opp_add_distr
fast_Zopp_plus_distr
Z.mul_add_distr_r
Z.mul_comm
Z.mul_add_distr_l
Z.add_shuffle0
Z.add_shuffle1
Z.sub_wd
Z.sub_0_r
Z.add_pred_r
Z.add_opp_r
Z.sub_succ_l
Z.sub_diag
Z.add_opp_diag_l
Z.add_opp_diag_r
Pos2Z.opp_neg
OMEGA13
fast_OMEGA13
Z.succ_lt_mono
Z.succ_le_mono
Z.add_le_mono_l
Z.add_le_mono_r
Z.opp_pred
Z.opp_involutive
Z.opp_sub_distr
Z.sub_sub_distr
Z.sub_simpl_r
Z.le_0_sub
Z.compare_antisym
Z.ge
Z.ge_le_iff
Zge_left
Nat.lt_nge
gt_not_le
not_le_minus_0
inj_minus2
Z.add_shuffle3
fast_Zplus_permute
subS_same
Init.Nat.modulo
modS_same
ge
ex_ind
Nat.lt_decidable
dec_lt
Nat.nlt_ge
not_lt
Z.add_le_mono
Z.add_nonneg_nonneg
OMEGA2
Z.gt
inj_eq
proj1
Nat.compare_ge_iff
nat_compare_ge
Nat2Z.inj_compare
Nat2Z.inj_ge
inj_ge
nat_compare_gt
Nat2Z.inj_gt
inj_gt
Nat2Z.inj_le
inj_le
Pos2Z.inj_succ
Nat2Z.inj_succ
Z.opp_eq_mul_m1
fast_Zopp_eq_mult_neg_1
sumbool_ind
GcdS_tcc
max_type
max_type_rect
max_type_ind
max
and_rec
Nat.le_lt_trans
sig
sig_rect
sig_rec
GcdS_terminate
GcdS
nat_R is defined
nat_R_rect is defined
nat_R_ind is defined
nat_R_rec is defined
le_R is defined
le_R_ind is defined
Coq__o__Init__o__Peano__o__lt_R is defined
'Coq__o__Init__o__Peano__o__lt_R' is now a registered translation.
prod_R is defined
prod_R_rect is defined
prod_R_ind is defined
prod_R_rec is defined
Coq__o__Init__o__Datatypes__o__snd_R is defined
'Coq__o__Init__o__Datatypes__o__snd_R' is now a registered translation.
Top__o__subS_R is defined
'Top__o__subS_R' is now a registered translation.
Coq__o__Init__o__Nat__o__divmod_R is defined
'Coq__o__Init__o__Nat__o__divmod_R' is now a registered translation.
Top__o__modS_R is defined
'Top__o__modS_R' is now a registered translation.
Top__o__GcdS_F_R is defined
'Top__o__GcdS_F_R' is now a registered translation.
Coq__o__funind__o__Recdef__o__iter_R is defined
'Coq__o__funind__o__Recdef__o__iter_R' is now a registered translation.
and_R is defined
and_R_rect is defined
and_R_ind is defined
and_R_rec is defined
Coq__o__Init__o__Logic__o__iff_R is defined
'Coq__o__Init__o__Logic__o__iff_R' is now a registered translation.
Coq__o__Program__o__Basics__o__impl_R is defined
'Coq__o__Program__o__Basics__o__impl_R' is now a registered translation.
unit_R is defined
unit_R_rect is defined
unit_R_ind is defined
unit_R_rec is defined
Coq__o__Classes__o__Init__o__Unconvertible_R is defined
'Coq__o__Classes__o__Init__o__Unconvertible_R' is now a registered translation.
Coq__o__Relations__o__Relation_Definitions__o__relation_R is defined
'Coq__o__Relations__o__Relation_Definitions__o__relation_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__Proper_R is defined
'Coq__o__Classes__o__Morphisms__o__Proper_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__subrelation_R is defined
'Coq__o__Classes__o__RelationClasses__o__subrelation_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__subrelation_proper_R is defined
'Coq__o__Classes__o__Morphisms__o__subrelation_proper_R' is now a registered translation.
eq_R is defined
eq_R_rect is defined
eq_R_ind is defined
eq_R_rec is defined
Coq__o__Init__o__Logic__o__eq_rect_R is defined
'Coq__o__Init__o__Logic__o__eq_rect_R' is now a registered translation.
Coq__o__Init__o__Logic__o__eq_ind_R is defined
'Coq__o__Init__o__Logic__o__eq_ind_R' is now a registered translation.
Coq__o__Init__o__Logic__o__eq_sym_R is defined
'Coq__o__Init__o__Logic__o__eq_sym_R' is now a registered translation.
Coq__o__Init__o__Logic__o__eq_ind_r_R is defined
'Coq__o__Init__o__Logic__o__eq_ind_r_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_wd_obligation_1_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_wd_obligation_1_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_wd_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_wd_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__subrelation_refl_R is defined
'Coq__o__Classes__o__Morphisms__o__subrelation_refl_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__respectful_R is defined
'Coq__o__Classes__o__Morphisms__o__respectful_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__Transitive_R is defined
'Coq__o__Classes__o__RelationClasses__o__Transitive_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__transitivity_R is defined
'Coq__o__Classes__o__RelationClasses__o__transitivity_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__trans_co_impl_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms__o__trans_co_impl_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__trans_co_impl_morphism_R is defined
'Coq__o__Classes__o__Morphisms__o__trans_co_impl_morphism_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__Symmetric_R is defined
'Coq__o__Classes__o__RelationClasses__o__Symmetric_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__Reflexive_R is defined
'Coq__o__Classes__o__RelationClasses__o__Reflexive_R' is now a registered translation.
Equivalence_R is defined
Coq__o__Classes__o__RelationClasses__o__Equivalence_Transitive_R is defined
'Coq__o__Classes__o__RelationClasses__o__Equivalence_Transitive_R' is now a registered translation.
PER_R is defined
Coq__o__Classes__o__RelationClasses__o__PER_Symmetric_R is defined
'Coq__o__Classes__o__RelationClasses__o__PER_Symmetric_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__symmetry_R is defined
'Coq__o__Classes__o__RelationClasses__o__symmetry_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__PER_Transitive_R is defined
'Coq__o__Classes__o__RelationClasses__o__PER_Transitive_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__PER_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms__o__PER_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__PER_morphism_R is defined
'Coq__o__Classes__o__Morphisms__o__PER_morphism_R' is now a registered translation.
Coq__o__Init__o__Nat__o__pred_R is defined
'Coq__o__Init__o__Nat__o__pred_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__Equivalence_Symmetric_R is defined
'Coq__o__Classes__o__RelationClasses__o__Equivalence_Symmetric_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__Equivalence_PER_R is defined
'Coq__o__Classes__o__RelationClasses__o__Equivalence_PER_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__pred_succ_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__pred_succ_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__reflexive_proper_proxy_R is defined
'Coq__o__Classes__o__Morphisms__o__reflexive_proper_proxy_R' is now a registered translation.
Coq__o__Init__o__Logic__o__and_rect_R is defined
'Coq__o__Init__o__Logic__o__and_rect_R' is now a registered translation.
Coq__o__Init__o__Logic__o__and_ind_R is defined
'Coq__o__Init__o__Logic__o__and_ind_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__iff_impl_subrelation_R is defined
'Coq__o__Classes__o__Morphisms__o__iff_impl_subrelation_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__pred_wd_obligation_1_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__pred_wd_obligation_1_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__pred_wd_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__pred_wd_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__Equivalence_Reflexive_R is defined
'Coq__o__Classes__o__RelationClasses__o__Equivalence_Reflexive_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__subrelation_respectful_R is defined
'Coq__o__Classes__o__Morphisms__o__subrelation_respectful_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__eq_Reflexive_R is defined
'Coq__o__Classes__o__RelationClasses__o__eq_Reflexive_R' is now a registered translation.
Coq__o__Init__o__Logic__o__eq_trans_R is defined
'Coq__o__Init__o__Logic__o__eq_trans_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__eq_Transitive_R is defined
'Coq__o__Classes__o__RelationClasses__o__eq_Transitive_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__eq_Symmetric_R is defined
'Coq__o__Classes__o__RelationClasses__o__eq_Symmetric_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__eq_equivalence_R is defined
'Coq__o__Classes__o__RelationClasses__o__eq_equivalence_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__eq_equiv_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__eq_equiv_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_inj_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_inj_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_inj_wd_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_inj_wd_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__ProperProxy_R is defined
'Coq__o__Classes__o__Morphisms__o__ProperProxy_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__Reflexive_partial_app_morphism_R is defined
'Coq__o__Classes__o__Morphisms__o__Reflexive_partial_app_morphism_R' is now a registered translation.
False_R is defined
False_R_rect is defined
False_R_ind is defined
False_R_rec is defined
Coq__o__Init__o__Logic__o__False_rect_R is defined
'Coq__o__Init__o__Logic__o__False_rect_R' is now a registered translation.
Coq__o__Init__o__Logic__o__False_ind_R is defined
'Coq__o__Init__o__Logic__o__False_ind_R' is now a registered translation.
Coq__o__Init__o__Logic__o__not_R is defined
'Coq__o__Init__o__Logic__o__not_R' is now a registered translation.
Coq__o__Init__o__Logic__o__iff_sym_R is defined
'Coq__o__Init__o__Logic__o__iff_sym_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__iff_Symmetric_R is defined
'Coq__o__Classes__o__RelationClasses__o__iff_Symmetric_R' is now a registered translation.
Coq__o__Init__o__Logic__o__iff_trans_R is defined
'Coq__o__Init__o__Logic__o__iff_trans_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__iff_Transitive_R is defined
'Coq__o__Classes__o__RelationClasses__o__iff_Transitive_R' is now a registered translation.
Coq__o__Init__o__Logic__o__iff_refl_R is defined
'Coq__o__Init__o__Logic__o__iff_refl_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__iff_Reflexive_R is defined
'Coq__o__Classes__o__RelationClasses__o__iff_Reflexive_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__iff_equivalence_R is defined
'Coq__o__Classes__o__RelationClasses__o__iff_equivalence_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__per_partial_app_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms__o__per_partial_app_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__per_partial_app_morphism_R is defined
'Coq__o__Classes__o__Morphisms__o__per_partial_app_morphism_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__trans_sym_co_inv_impl_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms__o__trans_sym_co_inv_impl_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__trans_sym_co_inv_impl_morphism_R is defined
'Coq__o__Classes__o__Morphisms__o__trans_sym_co_inv_impl_morphism_R' is now a registered translation.
Coq__o__Program__o__Basics__o__flip_R is defined
'Coq__o__Program__o__Basics__o__flip_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__reflexivity_R is defined
'Coq__o__Classes__o__RelationClasses__o__reflexivity_R' is now a registered translation.
comparison_R is defined
comparison_R_rect is defined
comparison_R_ind is defined
comparison_R_rec is defined
Coq__o__Init__o__Nat__o__compare_R is defined
'Coq__o__Init__o__Nat__o__compare_R' is now a registered translation.
or_R is defined
or_R_ind is defined
Coq__o__Init__o__Logic__o__or_ind_R is defined
'Coq__o__Init__o__Logic__o__or_ind_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__trans_co_eq_inv_impl_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms__o__trans_co_eq_inv_impl_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__trans_co_eq_inv_impl_morphism_R is defined
'Coq__o__Classes__o__Morphisms__o__trans_co_eq_inv_impl_morphism_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__eq_proper_proxy_R is defined
'Coq__o__Classes__o__Morphisms__o__eq_proper_proxy_R' is now a registered translation.
Coq__o__Classes__o__Morphisms_Prop__o__or_iff_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms_Prop__o__or_iff_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms_Prop__o__or_iff_morphism_R is defined
'Coq__o__Classes__o__Morphisms_Prop__o__or_iff_morphism_R' is now a registered translation.
Coq__o__Init__o__Datatypes__o__nat_rect_R is defined
'Coq__o__Init__o__Datatypes__o__nat_rect_R' is now a registered translation.
Coq__o__Init__o__Datatypes__o__nat_ind_R is defined
'Coq__o__Init__o__Datatypes__o__nat_ind_R' is now a registered translation.
Coq__o__Init__o__Logic__o__f_equal_R is defined
'Coq__o__Init__o__Logic__o__f_equal_R' is now a registered translation.
Coq__o__Init__o__Peano__o__f_equal_nat_R is defined
'Coq__o__Init__o__Peano__o__f_equal_nat_R' is now a registered translation.
Coq__o__Init__o__Peano__o__eq_add_S_R is defined
'Coq__o__Init__o__Peano__o__eq_add_S_R' is now a registered translation.
True_R is defined
True_R_rect is defined
True_R_ind is defined
True_R_rec is defined
Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_eq_iff_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_eq_iff_R' is now a registered translation.
Coq__o__Init__o__Peano__o__le_0_n_R is defined
'Coq__o__Init__o__Peano__o__le_0_n_R' is now a registered translation.
Coq__o__Init__o__Peano__o__le_ind_R is defined
'Coq__o__Init__o__Peano__o__le_ind_R' is now a registered translation.
Coq__o__Init__o__Peano__o__le_pred_R is defined
'Coq__o__Init__o__Peano__o__le_pred_R' is now a registered translation.
Coq__o__Init__o__Peano__o__le_S_n_R is defined
'Coq__o__Init__o__Peano__o__le_S_n_R' is now a registered translation.
Coq__o__Init__o__Peano__o__le_n_S_R is defined
'Coq__o__Init__o__Peano__o__le_n_S_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_le_iff_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_le_iff_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_lt_iff_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_lt_iff_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_eq_cases_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_eq_cases_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_refl_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_refl_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__iff_flip_impl_subrelation_R is defined
'Coq__o__Classes__o__Morphisms__o__iff_flip_impl_subrelation_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_succ_r_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_succ_r_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_succ_diag_r_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_succ_diag_r_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_wd_obligation_1_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_wd_obligation_1_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_wd_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_wd_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_refl_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_refl_R' is now a registered translation.
Coq__o__Classes__o__Morphisms_Prop__o__not_iff_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms_Prop__o__not_iff_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms_Prop__o__not_iff_morphism_R is defined
'Coq__o__Classes__o__Morphisms_Prop__o__not_iff_morphism_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_irrefl_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_irrefl_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__neq_succ_diag_l_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__neq_succ_diag_l_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_le_incl_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_le_incl_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__nlt_succ_diag_l_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__nlt_succ_diag_l_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__nle_succ_diag_l_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__nle_succ_diag_l_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__bi_induction_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__bi_induction_R' is now a registered translation.
Coq__o__Classes__o__Morphisms_Prop__o__iff_iff_iff_impl_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms_Prop__o__iff_iff_iff_impl_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms_Prop__o__iff_iff_iff_impl_morphism_R is defined
'Coq__o__Classes__o__Morphisms_Prop__o__iff_iff_iff_impl_morphism_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__central_induction_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__central_induction_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_wd_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_wd_R' is now a registered translation.
Coq__o__Init__o__Logic__o__or_iff_compat_r_R is defined
'Coq__o__Init__o__Logic__o__or_iff_compat_r_R' is now a registered translation.
Coq__o__Init__o__Logic__o__or_cancel_r_R is defined
'Coq__o__Init__o__Logic__o__or_cancel_r_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_succ_l_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_succ_l_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_lt_mono_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_lt_mono_R' is now a registered translation.
Coq__o__Arith__o__Lt__o__lt_S_n_R is defined
'Coq__o__Arith__o__Lt__o__lt_S_n_R' is now a registered translation.
Acc_R is defined
Acc_R_rect is defined
Acc_R_ind is defined
Acc_R_rec is defined
Coq__o__Init__o__Wf__o__Acc_inv_R is defined
'Coq__o__Init__o__Wf__o__Acc_inv_R' is now a registered translation.
positive_R is defined
positive_R_rect is defined
positive_R_ind is defined
positive_R_rec is defined
Coq__o__PArith__o__BinPosDef__o__Pos__o__succ_R is defined
'Coq__o__PArith__o__BinPosDef__o__Pos__o__succ_R' is now a registered translation.
Coq__o__PArith__o__BinPosDef__o__Pos__o__of_succ_nat_R is defined
'Coq__o__PArith__o__BinPosDef__o__Pos__o__of_succ_nat_R' is now a registered translation.
Z_R is defined
Z_R_rect is defined
Z_R_ind is defined
Z_R_rec is defined
Coq__o__ZArith__o__BinIntDef__o__Z__o__of_nat_R is defined
'Coq__o__ZArith__o__BinIntDef__o__Z__o__of_nat_R' is now a registered translation.
Coq__o__Logic__o__Decidable__o__decidable_R is defined
'Coq__o__Logic__o__Decidable__o__decidable_R' is now a registered translation.
Coq__o__Logic__o__Decidable__o__dec_not_not_R is defined
'Coq__o__Logic__o__Decidable__o__dec_not_not_R' is now a registered translation.
Coq__o__PArith__o__BinPosDef__o__Pos__o__pred_double_R is defined
'Coq__o__PArith__o__BinPosDef__o__Pos__o__pred_double_R' is now a registered translation.
Coq__o__ZArith__o__BinIntDef__o__Z__o__pred_double_R is defined
'Coq__o__ZArith__o__BinIntDef__o__Z__o__pred_double_R' is now a registered translation.
Coq__o__ZArith__o__BinIntDef__o__Z__o__double_R is defined
'Coq__o__ZArith__o__BinIntDef__o__Z__o__double_R' is now a registered translation.
Coq__o__ZArith__o__BinIntDef__o__Z__o__succ_double_R is defined
'Coq__o__ZArith__o__BinIntDef__o__Z__o__succ_double_R' is now a registered translation.
Coq__o__ZArith__o__BinIntDef__o__Z__o__pos_sub_R is defined
'Coq__o__ZArith__o__BinIntDef__o__Z__o__pos_sub_R' is now a registered translation.
Coq__o__PArith__o__BinPosDef__o__Pos__o__add_R is defined
'Coq__o__PArith__o__BinPosDef__o__Pos__o__add_R' is now a registered translation.
Coq__o__ZArith__o__BinIntDef__o__Z__o__add_R is defined
'Coq__o__ZArith__o__BinIntDef__o__Z__o__add_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__reflexive_proper_R is defined
'Coq__o__Classes__o__Morphisms__o__reflexive_proper_R' is now a registered translation.
Coq__o__ZArith__o__BinInt__o__Z__o__eq_R is defined
'Coq__o__ZArith__o__BinInt__o__Z__o__eq_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__reflexive_eq_dom_reflexive_R is defined
'Coq__o__Classes__o__Morphisms__o__reflexive_eq_dom_reflexive_R' is now a registered translation.
Coq__o__ZArith__o__BinInt__o__Z__o__add_wd_R is defined
'Coq__o__ZArith__o__BinInt__o__Z__o__add_wd_R' is now a registered translation.
Coq__o__ZArith__o__BinInt__o__Z__o__eq_equiv_R is defined
'Coq__o__ZArith__o__BinInt__o__Z__o__eq_equiv_R' is now a registered translation.
Coq__o__ZArith__o__BinIntDef__o__Z__o__succ_R is defined
'Coq__o__ZArith__o__BinIntDef__o__Z__o__succ_R' is now a registered translation.
Coq__o__ZArith__o__BinInt__o__Z__o__succ_wd_R is defined
'Coq__o__ZArith__o__BinInt__o__Z__o__succ_wd_R' is now a registered translation.
Coq__o__ZArith__o__BinIntDef__o__Z__o__pred_R is defined
'Coq__o__ZArith__o__BinIntDef__o__Z__o__pred_R' is now a registered translation.
Coq__o__ZArith__o__BinIntDef__o__Z__o__opp_R is defined
'Coq__o__ZArith__o__BinIntDef__o__Z__o__opp_R' is now a registered translation.
Coq__o__PArith__o__BinPosDef__o__Pos__o__compare_cont_R is defined
'Coq__o__PArith__o__BinPosDef__o__Pos__o__compare_cont_R' is now a registered translation.
Coq__o__PArith__o__BinPosDef__o__Pos__o__compare_R is defined
'Coq__o__PArith__o__BinPosDef__o__Pos__o__compare_R' is now a registered translation.
mask_R is defined
mask_R_rect is defined
mask_R_ind is defined
mask_R_rec is defined
Coq__o__PArith__o__BinPosDef__o__Pos__o__double_pred_mask_R is defined
'Coq__o__PArith__o__BinPosDef__o__Pos__o__double_pred_mask_R' is now a registered translation.
Coq__o__PArith__o__BinPosDef__o__Pos__o__double_mask_R is defined
'Coq__o__PArith__o__BinPosDef__o__Pos__o__double_mask_R' is now a registered translation.
Coq__o__PArith__o__BinPosDef__o__Pos__o__succ_double_mask_R is defined
'Coq__o__PArith__o__BinPosDef__o__Pos__o__succ_double_mask_R' is now a registered translation.
Anomaly: Uncaught exception Not_found. Please report at
http://coq.inria.fr/bugs/.
*)
|