1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
|
Declare ML Module "coq-paramcoq.plugin".
Require Import NPeano.
Require Import Recdef.
Set Implicit Arguments.
Fixpoint subS (n m : nat) {struct n} : nat :=
match n return nat with
| 0 => 0(* originally n*)
| S k => match m return nat with
| 0 => S k (* originally n*)
| S l => subS k l
end
end.
Definition modS :=
fun x y : nat => match y with
| 0 => y
| S y' => subS y' (snd (divmod x y' 0 y'))
end.
(*
Lemma subS_same : forall n m, subS n m = Nat.sub n m.
Proof.
induction n; destruct m; simpl; auto.
Qed.
Lemma modS_same : forall n m, modS n m = Nat.modulo n m.
Proof.
destruct m; simpl; auto.
rewrite subS_same. reflexivity.
Qed.
*)
Lemma NNmod_upper_boundA
: forall a b : nat, b <> 0 -> modS a b < b.
Admitted.
Definition T := forall a b : nat, b <> 0 -> modS a b < b.
Parametricity Recursive T.
Print T_R.
Axiom NNmod_upper_boundA_R : (fun H H0 : forall a b : nat, b <> 0 -> modS a b < b =>
forall (a₁ a₂ : nat) (a_R : nat_R a₁ a₂) (b₁ b₂ : nat) (b_R : nat_R b₁ b₂)
(H1 : b₁ <> 0) (H2 : b₂ <> 0),
not_R (eq_R nat_R b_R nat_R_O_R) H1 H2 ->
lt_R (modS_R a_R b_R) b_R (H a₁ b₁ H1)
(H0 a₂ b₂ H2)) NNmod_upper_boundA NNmod_upper_boundA.
Realizer NNmod_upper_boundA as NNmod_upper_boundA_RR := NNmod_upper_boundA_R.
Lemma NNmod_upper_bound
: forall a b : nat, b <> 0 -> modS a b < b.
Proof.
intros. apply NNmod_upper_boundA. assumption.
Qed.
Function GcdS (a b : nat) {wf lt a} : nat :=
match a with
| O => b
| S k => GcdS (modS b (S k)) (S k)
end.
Proof.
- intros m n k Heq. apply NNmod_upper_bound.
intros Hc. inversion Hc.
- apply Wf_nat.lt_wf.
Defined.
Require Import ProofIrrelevance.
Parametricity Recursive sig_rec.
Ltac destruct_reflexivity :=
intros ; repeat match goal with
| [ x : _ |- _ = _ ] => destruct x; reflexivity; fail
end.
Ltac destruct_construct x :=
(destruct x; [ constructor 1 ]; auto; fail)
|| (destruct x; [ constructor 1 | constructor 2 ]; auto; fail)
|| (destruct x; [ constructor 1 | constructor 2 | constructor 3]; auto; fail).
Ltac unfold_cofix := intros; match goal with
[ |- _ = ?folded ] =>
let x := fresh "x" in
let typ := type of folded in
(match folded with _ _ => pattern folded | _ => pattern folded at 2 end);
match goal with [ |- ?P ?x ] =>
refine (let rebuild : typ -> typ := _ in
let path : rebuild folded = folded := _ in
eq_rect _ P _ folded path) end;
[ intro x ; destruct_construct x; fail
| destruct folded; reflexivity
| reflexivity]; fail
end.
Ltac destruct_with_nat_arg_pattern x :=
pattern x;
match type of x with
| ?I 0 => refine (let gen : forall m (q : I m),
(match m return I m -> Type with
0 => fun p => _ p
| S n => fun _ => unit end q) := _ in gen 0 x)
| ?I (S ?n) => refine (let gen : forall m (q : I m),
(match m return I m -> Type with
0 => fun _ => unit
| S n => fun p => _ p end q) := _ in gen (S n) x)
end; intros m q; destruct q.
Ltac destruct_reflexivity_with_nat_arg_pattern :=
intros ; repeat match goal with
| [ x : _ |- _ = _ ] => destruct_with_nat_arg_pattern x; reflexivity; fail
end.
Global Parametricity Tactic := ((destruct_reflexivity; fail)
|| (unfold_cofix; fail)
|| (destruct_reflexivity_with_nat_arg_pattern; fail)
|| auto).
Parametricity Recursive GcdS qualified.
(*
1 subgoal
______________________________________(1/1)
forall (a₁ a₂ : nat) (a_R : nat_R a₁ a₂) (b₁ b₂ : nat) (b_R : nat_R b₁ b₂),
sig_R nat_R
(fun (v₁ v₂ : nat) (v_R : nat_R v₁ v₂) =>
ex_R nat_R
(fun (p₁ p₂ : nat) (p_R : nat_R p₁ p₂)
(H : forall k : nat,
p₁ < k ->
forall def : nat -> nat -> nat,
iter (nat -> nat -> nat) k GcdS_F def a₁ b₁ = v₁)
(H0 : forall k : nat,
p₂ < k ->
forall def : nat -> nat -> nat,
iter (nat -> nat -> nat) k GcdS_F def a₂ b₂ = v₂) =>
forall (k₁ k₂ : nat) (k_R : nat_R k₁ k₂) (H1 : p₁ < k₁) (H2 : p₂ < k₂),
Coq__o__Init__o__Peano__o__lt_R p_R k_R H1 H2 ->
forall (def₁ def₂ : nat -> nat -> nat)
(def_R : forall a₁0 a₂0 : nat,
nat_R a₁0 a₂0 ->
forall b₁0 b₂0 : nat,
nat_R b₁0 b₂0 -> nat_R (def₁ a₁0 b₁0) (def₂ a₂0 b₂0)),
eq_R nat_R
(Coq__o__funind__o__Recdef__o__iter_R
(fun H3 H4 : nat -> nat -> nat =>
forall a₁0 a₂0 : nat,
nat_R a₁0 a₂0 ->
forall b₁0 b₂0 : nat,
nat_R b₁0 b₂0 -> nat_R (H3 a₁0 b₁0) (H4 a₂0 b₂0)) k_R GcdS_F
GcdS_F Top__o__GcdS_F_R def₁ def₂ def_R a₁ a₂ a_R b₁ b₂ b_R) v_R
(H k₁ H1 def₁) (H0 k₂ H2 def₂))) (GcdS_terminate a₁ b₁)
(GcdS_terminate a₂ b₂)
*)
(*
DepRefs:
GcdS_F
iter
and
iff
Basics.impl
unit
Init.Unconvertible
Relation_Definitions.relation
Morphisms.Proper
RelationClasses.subrelation
Morphisms.subrelation_proper
eq_rect
eq_ind
eq_sym
eq_ind_r
PeanoNat.Nat.succ_wd_obligation_1
PeanoNat.Nat.succ_wd
Morphisms.subrelation_refl
Morphisms.respectful
RelationClasses.Transitive
RelationClasses.transitivity
Morphisms.trans_co_impl_morphism_obligation_1
Morphisms.trans_co_impl_morphism
RelationClasses.Symmetric
RelationClasses.Reflexive
RelationClasses.Equivalence
RelationClasses.Equivalence_Transitive
RelationClasses.PER
RelationClasses.PER_Symmetric
RelationClasses.symmetry
RelationClasses.PER_Transitive
Morphisms.PER_morphism_obligation_1
Morphisms.PER_morphism
Init.Nat.pred
RelationClasses.Equivalence_Symmetric
RelationClasses.Equivalence_PER
PeanoNat.Nat.pred_succ
Morphisms.reflexive_proper_proxy
and_rect
and_ind
Morphisms.iff_impl_subrelation
PeanoNat.Nat.pred_wd_obligation_1
PeanoNat.Nat.pred_wd
RelationClasses.Equivalence_Reflexive
Morphisms.subrelation_respectful
RelationClasses.eq_Reflexive
eq_trans
RelationClasses.eq_Transitive
RelationClasses.eq_Symmetric
RelationClasses.eq_equivalence
PeanoNat.Nat.eq_equiv
PeanoNat.Nat.succ_inj
PeanoNat.Nat.succ_inj_wd
Morphisms.ProperProxy
Morphisms.Reflexive_partial_app_morphism
False_rect
False_ind
iff_sym
RelationClasses.iff_Symmetric
iff_trans
RelationClasses.iff_Transitive
iff_refl
RelationClasses.iff_Reflexive
RelationClasses.iff_equivalence
Morphisms.per_partial_app_morphism_obligation_1
Morphisms.per_partial_app_morphism
Morphisms.trans_sym_co_inv_impl_morphism_obligation_1
Morphisms.trans_sym_co_inv_impl_morphism
Basics.flip
RelationClasses.reflexivity
comparison
Init.Nat.compare
or
or_ind
Morphisms.trans_co_eq_inv_impl_morphism_obligation_1
Morphisms.trans_co_eq_inv_impl_morphism
Morphisms.eq_proper_proxy
Morphisms_Prop.or_iff_morphism_obligation_1
Morphisms_Prop.or_iff_morphism
nat_rect
nat_ind
f_equal
f_equal_nat
eq_add_S
True
PeanoNat.Nat.compare_eq_iff
le_0_n
le_ind
le_pred
le_S_n
le_n_S
PeanoNat.Nat.compare_le_iff
PeanoNat.Nat.compare_lt_iff
PeanoNat.Nat.lt_eq_cases
PeanoNat.Nat.le_refl
Morphisms.iff_flip_impl_subrelation
PeanoNat.Nat.lt_succ_r
PeanoNat.Nat.lt_succ_diag_r
PeanoNat.Nat.lt_wd_obligation_1
PeanoNat.Nat.lt_wd
PeanoNat.Nat.compare_refl
Morphisms_Prop.not_iff_morphism_obligation_1
Morphisms_Prop.not_iff_morphism
PeanoNat.Nat.lt_irrefl
PeanoNat.Nat.neq_succ_diag_l
PeanoNat.Nat.lt_le_incl
PeanoNat.Nat.nlt_succ_diag_l
PeanoNat.Nat.nle_succ_diag_l
PeanoNat.Nat.bi_induction
Morphisms_Prop.iff_iff_iff_impl_morphism_obligation_1
Morphisms_Prop.iff_iff_iff_impl_morphism
PeanoNat.Nat.central_induction
PeanoNat.Nat.le_wd
or_iff_compat_r
or_cancel_r
PeanoNat.Nat.le_succ_l
PeanoNat.Nat.succ_lt_mono
Lt.lt_S_n
Acc
Acc_inv
RelationClasses.complement
RelationClasses.Irreflexive
RelationClasses.StrictOrder
RelationClasses.StrictOrder_Transitive
PeanoNat.Nat.lt_asymm
PeanoNat.Nat.lt_trans
PeanoNat.Nat.lt_strorder
PeanoNat.Nat.Private_OrderTac.IsTotal.lt_strorder
PeanoNat.Nat.le_lteq
PeanoNat.Nat.Private_OrderTac.IsTotal.le_lteq
PeanoNat.Nat.lt_compat
PeanoNat.Nat.Private_OrderTac.IsTotal.lt_compat
OrdersTac.ord
OrdersTac.trans_ord
PeanoNat.Nat.Private_OrderTac.IsTotal.eq_equiv
PeanoNat.Nat.Private_OrderTac.Tac.interp_ord
PeanoNat.Nat.Private_OrderTac.Tac.trans
PeanoNat.Nat.Private_OrderTac.Tac.le_lt_trans
RelationClasses.StrictOrder_Irreflexive
PeanoNat.Nat.Private_OrderTac.Tac.lt_irrefl
PeanoNat.Nat.le_gt_cases
PeanoNat.Nat.lt_trichotomy
PeanoNat.Nat.lt_total
PeanoNat.Nat.Private_OrderTac.IsTotal.lt_total
PeanoNat.Nat.Private_OrderTac.Tac.not_ge_lt
PeanoNat.Nat.lt_le_trans
Wf_nat.ltof
Lt.lt_n_Sm_le
PeanoNat.Nat.Private_OrderTac.Tac.lt_eq
PeanoNat.Nat.Private_OrderTac.Tac.not_gt_le
PeanoNat.Nat.eq_le_incl
PeanoNat.Nat.Private_OrderTac.Tac.lt_trans
PeanoNat.Nat.le_le_succ_r
PeanoNat.Nat.le_succ_r
PeanoNat.Nat.pred_0
PeanoNat.Nat.neq_succ_0
PeanoNat.Nat.le_0_l
PeanoNat.Nat.le_ngt
PeanoNat.Nat.nlt_0_r
well_founded
Wf_nat.well_founded_ltof
Wf_nat.lt_wf
NNmod_upper_bound
GcdS_tcc
max_type
max_type_rect
max_type_ind
ex
ex_ind
Lt.lt_n_S
nat_rec
gt
Lt.lt_le_S
Gt.gt_le_S
all
Morphisms.pointwise_relation
Morphisms_Prop.all_iff_morphism_obligation_1
Morphisms_Prop.all_iff_morphism
PeanoNat.Nat.lt_exists_pred_strong
PeanoNat.Nat.lt_exists_pred
PeanoNat.Nat.rs_rs'
PeanoNat.Nat.A'A_right
PeanoNat.Nat.rbase
PeanoNat.Nat.lt_lt_succ_r
PeanoNat.Nat.rs'_rs''
PeanoNat.Nat.strong_right_induction
PeanoNat.Nat.right_induction
PeanoNat.Nat.induction
PeanoNat.Nat.lt_0_succ
Le.le_n_S
sumbool
sumbool_rect
sumbool_rec
Compare_dec.le_lt_dec
Compare_dec.le_gt_dec
max
and_rec
PeanoNat.Nat.le_lt_trans
GcdS_terminate
GcdS
Top__o__GcdS_F_R is defined
'Top__o__GcdS_F_R' is now a registered translation.
Coq__o__funind__o__Recdef__o__iter_R is defined
'Coq__o__funind__o__Recdef__o__iter_R' is now a registered translation.
and_R is defined
and_R_rect is defined
and_R_ind is defined
and_R_rec is defined
Coq__o__Init__o__Logic__o__iff_R is defined
'Coq__o__Init__o__Logic__o__iff_R' is now a registered translation.
Coq__o__Program__o__Basics__o__impl_R is defined
'Coq__o__Program__o__Basics__o__impl_R' is now a registered translation.
unit_R is defined
unit_R_rect is defined
unit_R_ind is defined
unit_R_rec is defined
Coq__o__Classes__o__Init__o__Unconvertible_R is defined
'Coq__o__Classes__o__Init__o__Unconvertible_R' is now a registered translation.
Coq__o__Relations__o__Relation_Definitions__o__relation_R is defined
'Coq__o__Relations__o__Relation_Definitions__o__relation_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__Proper_R is defined
'Coq__o__Classes__o__Morphisms__o__Proper_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__subrelation_R is defined
'Coq__o__Classes__o__RelationClasses__o__subrelation_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__subrelation_proper_R is defined
'Coq__o__Classes__o__Morphisms__o__subrelation_proper_R' is now a registered translation.
Coq__o__Init__o__Logic__o__eq_rect_R is defined
'Coq__o__Init__o__Logic__o__eq_rect_R' is now a registered translation.
Coq__o__Init__o__Logic__o__eq_ind_R is defined
'Coq__o__Init__o__Logic__o__eq_ind_R' is now a registered translation.
Coq__o__Init__o__Logic__o__eq_sym_R is defined
'Coq__o__Init__o__Logic__o__eq_sym_R' is now a registered translation.
Coq__o__Init__o__Logic__o__eq_ind_r_R is defined
'Coq__o__Init__o__Logic__o__eq_ind_r_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_wd_obligation_1_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_wd_obligation_1_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_wd_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_wd_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__subrelation_refl_R is defined
'Coq__o__Classes__o__Morphisms__o__subrelation_refl_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__respectful_R is defined
'Coq__o__Classes__o__Morphisms__o__respectful_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__Transitive_R is defined
'Coq__o__Classes__o__RelationClasses__o__Transitive_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__transitivity_R is defined
'Coq__o__Classes__o__RelationClasses__o__transitivity_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__trans_co_impl_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms__o__trans_co_impl_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__trans_co_impl_morphism_R is defined
'Coq__o__Classes__o__Morphisms__o__trans_co_impl_morphism_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__Symmetric_R is defined
'Coq__o__Classes__o__RelationClasses__o__Symmetric_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__Reflexive_R is defined
'Coq__o__Classes__o__RelationClasses__o__Reflexive_R' is now a registered translation.
Equivalence_R is defined
Coq__o__Classes__o__RelationClasses__o__Equivalence_Transitive_R is defined
'Coq__o__Classes__o__RelationClasses__o__Equivalence_Transitive_R' is now a registered translation.
PER_R is defined
Coq__o__Classes__o__RelationClasses__o__PER_Symmetric_R is defined
'Coq__o__Classes__o__RelationClasses__o__PER_Symmetric_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__symmetry_R is defined
'Coq__o__Classes__o__RelationClasses__o__symmetry_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__PER_Transitive_R is defined
'Coq__o__Classes__o__RelationClasses__o__PER_Transitive_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__PER_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms__o__PER_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__PER_morphism_R is defined
'Coq__o__Classes__o__Morphisms__o__PER_morphism_R' is now a registered translation.
Coq__o__Init__o__Nat__o__pred_R is defined
'Coq__o__Init__o__Nat__o__pred_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__Equivalence_Symmetric_R is defined
'Coq__o__Classes__o__RelationClasses__o__Equivalence_Symmetric_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__Equivalence_PER_R is defined
'Coq__o__Classes__o__RelationClasses__o__Equivalence_PER_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__pred_succ_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__pred_succ_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__reflexive_proper_proxy_R is defined
'Coq__o__Classes__o__Morphisms__o__reflexive_proper_proxy_R' is now a registered translation.
Coq__o__Init__o__Logic__o__and_rect_R is defined
'Coq__o__Init__o__Logic__o__and_rect_R' is now a registered translation.
Coq__o__Init__o__Logic__o__and_ind_R is defined
'Coq__o__Init__o__Logic__o__and_ind_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__iff_impl_subrelation_R is defined
'Coq__o__Classes__o__Morphisms__o__iff_impl_subrelation_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__pred_wd_obligation_1_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__pred_wd_obligation_1_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__pred_wd_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__pred_wd_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__Equivalence_Reflexive_R is defined
'Coq__o__Classes__o__RelationClasses__o__Equivalence_Reflexive_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__subrelation_respectful_R is defined
'Coq__o__Classes__o__Morphisms__o__subrelation_respectful_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__eq_Reflexive_R is defined
'Coq__o__Classes__o__RelationClasses__o__eq_Reflexive_R' is now a registered translation.
Coq__o__Init__o__Logic__o__eq_trans_R is defined
'Coq__o__Init__o__Logic__o__eq_trans_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__eq_Transitive_R is defined
'Coq__o__Classes__o__RelationClasses__o__eq_Transitive_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__eq_Symmetric_R is defined
'Coq__o__Classes__o__RelationClasses__o__eq_Symmetric_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__eq_equivalence_R is defined
'Coq__o__Classes__o__RelationClasses__o__eq_equivalence_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__eq_equiv_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__eq_equiv_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_inj_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_inj_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_inj_wd_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_inj_wd_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__ProperProxy_R is defined
'Coq__o__Classes__o__Morphisms__o__ProperProxy_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__Reflexive_partial_app_morphism_R is defined
'Coq__o__Classes__o__Morphisms__o__Reflexive_partial_app_morphism_R' is now a registered translation.
Coq__o__Init__o__Logic__o__False_rect_R is defined
'Coq__o__Init__o__Logic__o__False_rect_R' is now a registered translation.
Coq__o__Init__o__Logic__o__False_ind_R is defined
'Coq__o__Init__o__Logic__o__False_ind_R' is now a registered translation.
Coq__o__Init__o__Logic__o__iff_sym_R is defined
'Coq__o__Init__o__Logic__o__iff_sym_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__iff_Symmetric_R is defined
'Coq__o__Classes__o__RelationClasses__o__iff_Symmetric_R' is now a registered translation.
Coq__o__Init__o__Logic__o__iff_trans_R is defined
'Coq__o__Init__o__Logic__o__iff_trans_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__iff_Transitive_R is defined
'Coq__o__Classes__o__RelationClasses__o__iff_Transitive_R' is now a registered translation.
Coq__o__Init__o__Logic__o__iff_refl_R is defined
'Coq__o__Init__o__Logic__o__iff_refl_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__iff_Reflexive_R is defined
'Coq__o__Classes__o__RelationClasses__o__iff_Reflexive_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__iff_equivalence_R is defined
'Coq__o__Classes__o__RelationClasses__o__iff_equivalence_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__per_partial_app_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms__o__per_partial_app_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__per_partial_app_morphism_R is defined
'Coq__o__Classes__o__Morphisms__o__per_partial_app_morphism_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__trans_sym_co_inv_impl_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms__o__trans_sym_co_inv_impl_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__trans_sym_co_inv_impl_morphism_R is defined
'Coq__o__Classes__o__Morphisms__o__trans_sym_co_inv_impl_morphism_R' is now a registered translation.
Coq__o__Program__o__Basics__o__flip_R is defined
'Coq__o__Program__o__Basics__o__flip_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__reflexivity_R is defined
'Coq__o__Classes__o__RelationClasses__o__reflexivity_R' is now a registered translation.
comparison_R is defined
comparison_R_rect is defined
comparison_R_ind is defined
comparison_R_rec is defined
Coq__o__Init__o__Nat__o__compare_R is defined
'Coq__o__Init__o__Nat__o__compare_R' is now a registered translation.
or_R is defined
or_R_ind is defined
Coq__o__Init__o__Logic__o__or_ind_R is defined
'Coq__o__Init__o__Logic__o__or_ind_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__trans_co_eq_inv_impl_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms__o__trans_co_eq_inv_impl_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__trans_co_eq_inv_impl_morphism_R is defined
'Coq__o__Classes__o__Morphisms__o__trans_co_eq_inv_impl_morphism_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__eq_proper_proxy_R is defined
'Coq__o__Classes__o__Morphisms__o__eq_proper_proxy_R' is now a registered translation.
Coq__o__Classes__o__Morphisms_Prop__o__or_iff_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms_Prop__o__or_iff_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms_Prop__o__or_iff_morphism_R is defined
'Coq__o__Classes__o__Morphisms_Prop__o__or_iff_morphism_R' is now a registered translation.
Coq__o__Init__o__Datatypes__o__nat_rect_R is defined
'Coq__o__Init__o__Datatypes__o__nat_rect_R' is now a registered translation.
Coq__o__Init__o__Datatypes__o__nat_ind_R is defined
'Coq__o__Init__o__Datatypes__o__nat_ind_R' is now a registered translation.
Coq__o__Init__o__Logic__o__f_equal_R is defined
'Coq__o__Init__o__Logic__o__f_equal_R' is now a registered translation.
Coq__o__Init__o__Peano__o__f_equal_nat_R is defined
'Coq__o__Init__o__Peano__o__f_equal_nat_R' is now a registered translation.
Coq__o__Init__o__Peano__o__eq_add_S_R is defined
'Coq__o__Init__o__Peano__o__eq_add_S_R' is now a registered translation.
True_R is defined
True_R_rect is defined
True_R_ind is defined
True_R_rec is defined
Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_eq_iff_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_eq_iff_R' is now a registered translation.
Coq__o__Init__o__Peano__o__le_0_n_R is defined
'Coq__o__Init__o__Peano__o__le_0_n_R' is now a registered translation.
Coq__o__Init__o__Peano__o__le_ind_R is defined
'Coq__o__Init__o__Peano__o__le_ind_R' is now a registered translation.
Coq__o__Init__o__Peano__o__le_pred_R is defined
'Coq__o__Init__o__Peano__o__le_pred_R' is now a registered translation.
Coq__o__Init__o__Peano__o__le_S_n_R is defined
'Coq__o__Init__o__Peano__o__le_S_n_R' is now a registered translation.
Coq__o__Init__o__Peano__o__le_n_S_R is defined
'Coq__o__Init__o__Peano__o__le_n_S_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_le_iff_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_le_iff_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_lt_iff_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_lt_iff_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_eq_cases_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_eq_cases_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_refl_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_refl_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__iff_flip_impl_subrelation_R is defined
'Coq__o__Classes__o__Morphisms__o__iff_flip_impl_subrelation_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_succ_r_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_succ_r_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_succ_diag_r_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_succ_diag_r_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_wd_obligation_1_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_wd_obligation_1_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_wd_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_wd_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_refl_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_refl_R' is now a registered translation.
Coq__o__Classes__o__Morphisms_Prop__o__not_iff_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms_Prop__o__not_iff_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms_Prop__o__not_iff_morphism_R is defined
'Coq__o__Classes__o__Morphisms_Prop__o__not_iff_morphism_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_irrefl_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_irrefl_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__neq_succ_diag_l_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__neq_succ_diag_l_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_le_incl_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_le_incl_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__nlt_succ_diag_l_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__nlt_succ_diag_l_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__nle_succ_diag_l_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__nle_succ_diag_l_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__bi_induction_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__bi_induction_R' is now a registered translation.
Coq__o__Classes__o__Morphisms_Prop__o__iff_iff_iff_impl_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms_Prop__o__iff_iff_iff_impl_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms_Prop__o__iff_iff_iff_impl_morphism_R is defined
'Coq__o__Classes__o__Morphisms_Prop__o__iff_iff_iff_impl_morphism_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__central_induction_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__central_induction_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_wd_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_wd_R' is now a registered translation.
Coq__o__Init__o__Logic__o__or_iff_compat_r_R is defined
'Coq__o__Init__o__Logic__o__or_iff_compat_r_R' is now a registered translation.
Coq__o__Init__o__Logic__o__or_cancel_r_R is defined
'Coq__o__Init__o__Logic__o__or_cancel_r_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_succ_l_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_succ_l_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_lt_mono_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_lt_mono_R' is now a registered translation.
Coq__o__Arith__o__Lt__o__lt_S_n_R is defined
'Coq__o__Arith__o__Lt__o__lt_S_n_R' is now a registered translation.
Acc_R is defined
Acc_R_rect is defined
Acc_R_ind is defined
Acc_R_rec is defined
Coq__o__Init__o__Wf__o__Acc_inv_R is defined
'Coq__o__Init__o__Wf__o__Acc_inv_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__complement_R is defined
'Coq__o__Classes__o__RelationClasses__o__complement_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__Irreflexive_R is defined
'Coq__o__Classes__o__RelationClasses__o__Irreflexive_R' is now a registered translation.
StrictOrder_R is defined
Coq__o__Classes__o__RelationClasses__o__StrictOrder_Transitive_R is defined
'Coq__o__Classes__o__RelationClasses__o__StrictOrder_Transitive_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_asymm_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_asymm_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_trans_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_trans_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_strorder_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_strorder_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__IsTotal__o__lt_strorder_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__IsTotal__o__lt_strorder_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_lteq_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_lteq_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__IsTotal__o__le_lteq_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__IsTotal__o__le_lteq_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_compat_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_compat_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__IsTotal__o__lt_compat_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__IsTotal__o__lt_compat_R' is now a registered translation.
ord_R is defined
ord_R_rect is defined
ord_R_ind is defined
ord_R_rec is defined
Coq__o__Structures__o__OrdersTac__o__trans_ord_R is defined
'Coq__o__Structures__o__OrdersTac__o__trans_ord_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__IsTotal__o__eq_equiv_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__IsTotal__o__eq_equiv_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__interp_ord_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__interp_ord_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__trans_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__trans_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__le_lt_trans_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__le_lt_trans_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__StrictOrder_Irreflexive_R is defined
'Coq__o__Classes__o__RelationClasses__o__StrictOrder_Irreflexive_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__lt_irrefl_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__lt_irrefl_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_gt_cases_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_gt_cases_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_trichotomy_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_trichotomy_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_total_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_total_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__IsTotal__o__lt_total_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__IsTotal__o__lt_total_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__not_ge_lt_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__not_ge_lt_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_le_trans_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_le_trans_R' is now a registered translation.
Coq__o__Arith__o__Wf_nat__o__ltof_R is defined
'Coq__o__Arith__o__Wf_nat__o__ltof_R' is now a registered translation.
Coq__o__Arith__o__Lt__o__lt_n_Sm_le_R is defined
'Coq__o__Arith__o__Lt__o__lt_n_Sm_le_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__lt_eq_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__lt_eq_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__not_gt_le_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__not_gt_le_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__eq_le_incl_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__eq_le_incl_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__lt_trans_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__lt_trans_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_le_succ_r_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_le_succ_r_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_succ_r_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_succ_r_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__pred_0_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__pred_0_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__neq_succ_0_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__neq_succ_0_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_0_l_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_0_l_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_ngt_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_ngt_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__nlt_0_r_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__nlt_0_r_R' is now a registered translation.
Coq__o__Init__o__Wf__o__well_founded_R is defined
'Coq__o__Init__o__Wf__o__well_founded_R' is now a registered translation.
Coq__o__Arith__o__Wf_nat__o__well_founded_ltof_R is defined
'Coq__o__Arith__o__Wf_nat__o__well_founded_ltof_R' is now a registered translation.
Coq__o__Arith__o__Wf_nat__o__lt_wf_R is defined
'Coq__o__Arith__o__Wf_nat__o__lt_wf_R' is now a registered translation.
Top__o__NNmod_upper_bound_R is defined
'Top__o__NNmod_upper_bound_R' is now a registered translation.
Top__o__GcdS_tcc_R is defined
'Top__o__GcdS_tcc_R' is now a registered translation.
max_type_R is defined
max_type_R_rect is defined
max_type_R_ind is defined
max_type_R_rec is defined
Coq__o__funind__o__Recdef__o__max_type_rect_R is defined
'Coq__o__funind__o__Recdef__o__max_type_rect_R' is now a registered translation.
Coq__o__funind__o__Recdef__o__max_type_ind_R is defined
'Coq__o__funind__o__Recdef__o__max_type_ind_R' is now a registered translation.
ex_R is defined
ex_R_ind is defined
Coq__o__Init__o__Logic__o__ex_ind_R is defined
'Coq__o__Init__o__Logic__o__ex_ind_R' is now a registered translation.
Coq__o__Arith__o__Lt__o__lt_n_S_R is defined
'Coq__o__Arith__o__Lt__o__lt_n_S_R' is now a registered translation.
Coq__o__Init__o__Datatypes__o__nat_rec_R is defined
'Coq__o__Init__o__Datatypes__o__nat_rec_R' is now a registered translation.
Coq__o__Init__o__Peano__o__gt_R is defined
'Coq__o__Init__o__Peano__o__gt_R' is now a registered translation.
Coq__o__Arith__o__Lt__o__lt_le_S_R is defined
'Coq__o__Arith__o__Lt__o__lt_le_S_R' is now a registered translation.
Coq__o__Arith__o__Gt__o__gt_le_S_R is defined
'Coq__o__Arith__o__Gt__o__gt_le_S_R' is now a registered translation.
Coq__o__Init__o__Logic__o__all_R is defined
'Coq__o__Init__o__Logic__o__all_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__pointwise_relation_R is defined
'Coq__o__Classes__o__Morphisms__o__pointwise_relation_R' is now a registered translation.
Coq__o__Classes__o__Morphisms_Prop__o__all_iff_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms_Prop__o__all_iff_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms_Prop__o__all_iff_morphism_R is defined
'Coq__o__Classes__o__Morphisms_Prop__o__all_iff_morphism_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_exists_pred_strong_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_exists_pred_strong_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_exists_pred_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_exists_pred_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__rs_rs'_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__rs_rs'_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__A'A_right_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__A'A_right_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__rbase_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__rbase_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_lt_succ_r_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_lt_succ_r_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__rs'_rs''_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__rs'_rs''_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__strong_right_induction_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__strong_right_induction_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__right_induction_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__right_induction_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__induction_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__induction_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_0_succ_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_0_succ_R' is now a registered translation.
Coq__o__Arith__o__Le__o__le_n_S_R is defined
'Coq__o__Arith__o__Le__o__le_n_S_R' is now a registered translation.
sumbool_R is defined
sumbool_R_rect is defined
sumbool_R_ind is defined
sumbool_R_rec is defined
Coq__o__Init__o__Specif__o__sumbool_rect_R is defined
'Coq__o__Init__o__Specif__o__sumbool_rect_R' is now a registered translation.
Coq__o__Init__o__Specif__o__sumbool_rec_R is defined
'Coq__o__Init__o__Specif__o__sumbool_rec_R' is now a registered translation.
Coq__o__Arith__o__Compare_dec__o__le_lt_dec_R is defined
'Coq__o__Arith__o__Compare_dec__o__le_lt_dec_R' is now a registered translation.
Coq__o__Arith__o__Compare_dec__o__le_gt_dec_R is defined
'Coq__o__Arith__o__Compare_dec__o__le_gt_dec_R' is now a registered translation.
Coq__o__funind__o__Recdef__o__max_R is defined
'Coq__o__funind__o__Recdef__o__max_R' is now a registered translation.
Coq__o__Init__o__Logic__o__and_rec_R is defined
'Coq__o__Init__o__Logic__o__and_rec_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_lt_trans_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_lt_trans_R' is now a registered translation.
Anomaly: Uncaught exception Not_found. Please report at
http://coq.inria.fr/bugs/.
*)
|