File: bug5.v

package info (click to toggle)
paramcoq 1.1.3%2Bcoq8.16-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 444 kB
  • sloc: ml: 1,677; python: 112; sh: 61; makefile: 54
file content (780 lines) | stat: -rw-r--r-- 38,494 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
Declare ML Module "coq-paramcoq.plugin".

Require Import NPeano.
Require Import Recdef.
Set Implicit Arguments.




Fixpoint subS (n m : nat) {struct n} : nat :=
  match n return  nat with
  | 0 => 0(* originally n*)
  | S k => match m return nat with
           | 0 => S k (* originally n*)
           | S l => subS k l
           end
  end.



Definition modS :=
fun x y : nat => match y with
                 | 0 => y
                 | S y' => subS y' (snd (divmod x y' 0 y'))
                 end.

(*
Lemma subS_same : forall n m, subS  n m = Nat.sub n m.
Proof.
  induction n; destruct m; simpl; auto.
Qed.

Lemma modS_same : forall n m, modS  n m = Nat.modulo n m.
Proof.
   destruct m; simpl; auto.
    rewrite  subS_same. reflexivity.
Qed.
*)
Lemma NNmod_upper_boundA
     : forall a b : nat, b <> 0 -> modS a  b < b.
Admitted.

Definition T := forall a b : nat, b <> 0 -> modS a  b < b.
Parametricity Recursive T.
Print T_R.

Axiom NNmod_upper_boundA_R : (fun H H0 : forall a b : nat, b <> 0 -> modS a b < b =>
forall (a₁ a₂ : nat) (a_R : nat_R a₁ a₂) (b₁ b₂ : nat) (b_R : nat_R b₁ b₂)
  (H1 : b₁ <> 0) (H2 : b₂ <> 0),
not_R (eq_R nat_R b_R nat_R_O_R) H1 H2 ->
lt_R (modS_R a_R b_R) b_R (H a₁ b₁ H1)
  (H0 a₂ b₂ H2)) NNmod_upper_boundA NNmod_upper_boundA.

Realizer  NNmod_upper_boundA as NNmod_upper_boundA_RR := NNmod_upper_boundA_R.


Lemma NNmod_upper_bound
     : forall a b : nat, b <> 0 -> modS a  b < b.
Proof.
  
  intros. apply NNmod_upper_boundA. assumption.
Qed.




Function GcdS (a b : nat) {wf lt a} : nat :=
match a with
 | O => b 
 | S k =>  GcdS (modS b (S k))  (S k)
end.
Proof.
- intros m n k Heq. apply  NNmod_upper_bound.
  intros Hc. inversion Hc.
- apply Wf_nat.lt_wf.
Defined.


Require Import ProofIrrelevance.
Parametricity Recursive sig_rec.

Ltac destruct_reflexivity := 
  intros ; repeat match goal with 
    | [ x : _ |- _ = _ ] => destruct x; reflexivity; fail
  end.

Ltac destruct_construct x := 
    (destruct x; [ constructor 1 ]; auto; fail)
 || (destruct x; [ constructor 1 | constructor 2 ]; auto; fail)
 || (destruct x; [ constructor 1 | constructor 2 | constructor 3]; auto; fail).

Ltac unfold_cofix := intros; match goal with 
 [ |- _ = ?folded ] =>  
    let x := fresh "x" in 
    let typ := type of folded in 
    (match folded with _ _ => pattern folded | _ => pattern folded at 2 end);
    match goal with [ |- ?P ?x ] => 
    refine (let rebuild : typ -> typ := _ in 
            let path : rebuild folded = folded := _ in  
            eq_rect _ P _ folded path) end; 
    [ intro x ; destruct_construct x; fail 
    | destruct folded; reflexivity
    | reflexivity]; fail
end.

Ltac destruct_with_nat_arg_pattern x :=
  pattern x;
  match type of x with 
   | ?I 0 => refine (let gen : forall m (q : I m), 
     (match m return I m -> Type with 
         0 => fun p => _ p
     | S n => fun _  => unit end q) := _ in gen 0 x)     
   | ?I (S ?n) => refine (let gen : forall m (q : I m), 
     (match m return I m -> Type with 
         0 => fun _  => unit 
     | S n => fun p => _ p end q) := _ in gen (S n) x)
  end; intros m q; destruct q.

Ltac destruct_reflexivity_with_nat_arg_pattern := 
  intros ; repeat match goal with 
    | [ x : _ |- _ = _ ] => destruct_with_nat_arg_pattern x; reflexivity; fail
  end.
 
Global Parametricity Tactic := ((destruct_reflexivity; fail)
                            || (unfold_cofix; fail) 
                            || (destruct_reflexivity_with_nat_arg_pattern; fail)
                            ||  auto). 

Parametricity Recursive GcdS qualified.

(*
1 subgoal
______________________________________(1/1)
forall (a₁ a₂ : nat) (a_R : nat_R a₁ a₂) (b₁ b₂ : nat) (b_R : nat_R b₁ b₂),
sig_R nat_R
  (fun (v₁ v₂ : nat) (v_R : nat_R v₁ v₂) =>
   ex_R nat_R
     (fun (p₁ p₂ : nat) (p_R : nat_R p₁ p₂)
        (H : forall k : nat,
             p₁ < k ->
             forall def : nat -> nat -> nat,
             iter (nat -> nat -> nat) k GcdS_F def a₁ b₁ = v₁)
        (H0 : forall k : nat,
              p₂ < k ->
              forall def : nat -> nat -> nat,
              iter (nat -> nat -> nat) k GcdS_F def a₂ b₂ = v₂) =>
      forall (k₁ k₂ : nat) (k_R : nat_R k₁ k₂) (H1 : p₁ < k₁) (H2 : p₂ < k₂),
      Coq__o__Init__o__Peano__o__lt_R p_R k_R H1 H2 ->
      forall (def₁ def₂ : nat -> nat -> nat)
        (def_R : forall a₁0 a₂0 : nat,
                 nat_R a₁0 a₂0 ->
                 forall b₁0 b₂0 : nat,
                 nat_R b₁0 b₂0 -> nat_R (def₁ a₁0 b₁0) (def₂ a₂0 b₂0)),
      eq_R nat_R
        (Coq__o__funind__o__Recdef__o__iter_R
           (fun H3 H4 : nat -> nat -> nat =>
            forall a₁0 a₂0 : nat,
            nat_R a₁0 a₂0 ->
            forall b₁0 b₂0 : nat,
            nat_R b₁0 b₂0 -> nat_R (H3 a₁0 b₁0) (H4 a₂0 b₂0)) k_R GcdS_F
           GcdS_F Top__o__GcdS_F_R def₁ def₂ def_R a₁ a₂ a_R b₁ b₂ b_R) v_R
        (H k₁ H1 def₁) (H0 k₂ H2 def₂))) (GcdS_terminate a₁ b₁)
  (GcdS_terminate a₂ b₂)
*)

(*
DepRefs:
GcdS_F
iter
and
iff
Basics.impl
unit
Init.Unconvertible
Relation_Definitions.relation
Morphisms.Proper
RelationClasses.subrelation
Morphisms.subrelation_proper
eq_rect
eq_ind
eq_sym
eq_ind_r
PeanoNat.Nat.succ_wd_obligation_1
PeanoNat.Nat.succ_wd
Morphisms.subrelation_refl
Morphisms.respectful
RelationClasses.Transitive
RelationClasses.transitivity
Morphisms.trans_co_impl_morphism_obligation_1
Morphisms.trans_co_impl_morphism
RelationClasses.Symmetric
RelationClasses.Reflexive
RelationClasses.Equivalence
RelationClasses.Equivalence_Transitive
RelationClasses.PER
RelationClasses.PER_Symmetric
RelationClasses.symmetry
RelationClasses.PER_Transitive
Morphisms.PER_morphism_obligation_1
Morphisms.PER_morphism
Init.Nat.pred
RelationClasses.Equivalence_Symmetric
RelationClasses.Equivalence_PER
PeanoNat.Nat.pred_succ
Morphisms.reflexive_proper_proxy
and_rect
and_ind
Morphisms.iff_impl_subrelation
PeanoNat.Nat.pred_wd_obligation_1
PeanoNat.Nat.pred_wd
RelationClasses.Equivalence_Reflexive
Morphisms.subrelation_respectful
RelationClasses.eq_Reflexive
eq_trans
RelationClasses.eq_Transitive
RelationClasses.eq_Symmetric
RelationClasses.eq_equivalence
PeanoNat.Nat.eq_equiv
PeanoNat.Nat.succ_inj
PeanoNat.Nat.succ_inj_wd
Morphisms.ProperProxy
Morphisms.Reflexive_partial_app_morphism
False_rect
False_ind
iff_sym
RelationClasses.iff_Symmetric
iff_trans
RelationClasses.iff_Transitive
iff_refl
RelationClasses.iff_Reflexive
RelationClasses.iff_equivalence
Morphisms.per_partial_app_morphism_obligation_1
Morphisms.per_partial_app_morphism
Morphisms.trans_sym_co_inv_impl_morphism_obligation_1
Morphisms.trans_sym_co_inv_impl_morphism
Basics.flip
RelationClasses.reflexivity
comparison
Init.Nat.compare
or
or_ind
Morphisms.trans_co_eq_inv_impl_morphism_obligation_1
Morphisms.trans_co_eq_inv_impl_morphism
Morphisms.eq_proper_proxy
Morphisms_Prop.or_iff_morphism_obligation_1
Morphisms_Prop.or_iff_morphism
nat_rect
nat_ind
f_equal
f_equal_nat
eq_add_S
True
PeanoNat.Nat.compare_eq_iff
le_0_n
le_ind
le_pred
le_S_n
le_n_S
PeanoNat.Nat.compare_le_iff
PeanoNat.Nat.compare_lt_iff
PeanoNat.Nat.lt_eq_cases
PeanoNat.Nat.le_refl
Morphisms.iff_flip_impl_subrelation
PeanoNat.Nat.lt_succ_r
PeanoNat.Nat.lt_succ_diag_r
PeanoNat.Nat.lt_wd_obligation_1
PeanoNat.Nat.lt_wd
PeanoNat.Nat.compare_refl
Morphisms_Prop.not_iff_morphism_obligation_1
Morphisms_Prop.not_iff_morphism
PeanoNat.Nat.lt_irrefl
PeanoNat.Nat.neq_succ_diag_l
PeanoNat.Nat.lt_le_incl
PeanoNat.Nat.nlt_succ_diag_l
PeanoNat.Nat.nle_succ_diag_l
PeanoNat.Nat.bi_induction
Morphisms_Prop.iff_iff_iff_impl_morphism_obligation_1
Morphisms_Prop.iff_iff_iff_impl_morphism
PeanoNat.Nat.central_induction
PeanoNat.Nat.le_wd
or_iff_compat_r
or_cancel_r
PeanoNat.Nat.le_succ_l
PeanoNat.Nat.succ_lt_mono
Lt.lt_S_n
Acc
Acc_inv
RelationClasses.complement
RelationClasses.Irreflexive
RelationClasses.StrictOrder
RelationClasses.StrictOrder_Transitive
PeanoNat.Nat.lt_asymm
PeanoNat.Nat.lt_trans
PeanoNat.Nat.lt_strorder
PeanoNat.Nat.Private_OrderTac.IsTotal.lt_strorder
PeanoNat.Nat.le_lteq
PeanoNat.Nat.Private_OrderTac.IsTotal.le_lteq
PeanoNat.Nat.lt_compat
PeanoNat.Nat.Private_OrderTac.IsTotal.lt_compat
OrdersTac.ord
OrdersTac.trans_ord
PeanoNat.Nat.Private_OrderTac.IsTotal.eq_equiv
PeanoNat.Nat.Private_OrderTac.Tac.interp_ord
PeanoNat.Nat.Private_OrderTac.Tac.trans
PeanoNat.Nat.Private_OrderTac.Tac.le_lt_trans
RelationClasses.StrictOrder_Irreflexive
PeanoNat.Nat.Private_OrderTac.Tac.lt_irrefl
PeanoNat.Nat.le_gt_cases
PeanoNat.Nat.lt_trichotomy
PeanoNat.Nat.lt_total
PeanoNat.Nat.Private_OrderTac.IsTotal.lt_total
PeanoNat.Nat.Private_OrderTac.Tac.not_ge_lt
PeanoNat.Nat.lt_le_trans
Wf_nat.ltof
Lt.lt_n_Sm_le
PeanoNat.Nat.Private_OrderTac.Tac.lt_eq
PeanoNat.Nat.Private_OrderTac.Tac.not_gt_le
PeanoNat.Nat.eq_le_incl
PeanoNat.Nat.Private_OrderTac.Tac.lt_trans
PeanoNat.Nat.le_le_succ_r
PeanoNat.Nat.le_succ_r
PeanoNat.Nat.pred_0
PeanoNat.Nat.neq_succ_0
PeanoNat.Nat.le_0_l
PeanoNat.Nat.le_ngt
PeanoNat.Nat.nlt_0_r
well_founded
Wf_nat.well_founded_ltof
Wf_nat.lt_wf
NNmod_upper_bound
GcdS_tcc
max_type
max_type_rect
max_type_ind
ex
ex_ind
Lt.lt_n_S
nat_rec
gt
Lt.lt_le_S
Gt.gt_le_S
all
Morphisms.pointwise_relation
Morphisms_Prop.all_iff_morphism_obligation_1
Morphisms_Prop.all_iff_morphism
PeanoNat.Nat.lt_exists_pred_strong
PeanoNat.Nat.lt_exists_pred
PeanoNat.Nat.rs_rs'
PeanoNat.Nat.A'A_right
PeanoNat.Nat.rbase
PeanoNat.Nat.lt_lt_succ_r
PeanoNat.Nat.rs'_rs''
PeanoNat.Nat.strong_right_induction
PeanoNat.Nat.right_induction
PeanoNat.Nat.induction
PeanoNat.Nat.lt_0_succ
Le.le_n_S
sumbool
sumbool_rect
sumbool_rec
Compare_dec.le_lt_dec
Compare_dec.le_gt_dec
max
and_rec
PeanoNat.Nat.le_lt_trans
GcdS_terminate
GcdS
Top__o__GcdS_F_R is defined
'Top__o__GcdS_F_R' is now a registered translation.
Coq__o__funind__o__Recdef__o__iter_R is defined
'Coq__o__funind__o__Recdef__o__iter_R' is now a registered translation.
and_R is defined
and_R_rect is defined
and_R_ind is defined
and_R_rec is defined
Coq__o__Init__o__Logic__o__iff_R is defined
'Coq__o__Init__o__Logic__o__iff_R' is now a registered translation.
Coq__o__Program__o__Basics__o__impl_R is defined
'Coq__o__Program__o__Basics__o__impl_R' is now a registered translation.
unit_R is defined
unit_R_rect is defined
unit_R_ind is defined
unit_R_rec is defined
Coq__o__Classes__o__Init__o__Unconvertible_R is defined
'Coq__o__Classes__o__Init__o__Unconvertible_R' is now a registered translation.
Coq__o__Relations__o__Relation_Definitions__o__relation_R is defined
'Coq__o__Relations__o__Relation_Definitions__o__relation_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__Proper_R is defined
'Coq__o__Classes__o__Morphisms__o__Proper_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__subrelation_R is defined
'Coq__o__Classes__o__RelationClasses__o__subrelation_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__subrelation_proper_R is defined
'Coq__o__Classes__o__Morphisms__o__subrelation_proper_R' is now a registered translation.
Coq__o__Init__o__Logic__o__eq_rect_R is defined
'Coq__o__Init__o__Logic__o__eq_rect_R' is now a registered translation.
Coq__o__Init__o__Logic__o__eq_ind_R is defined
'Coq__o__Init__o__Logic__o__eq_ind_R' is now a registered translation.
Coq__o__Init__o__Logic__o__eq_sym_R is defined
'Coq__o__Init__o__Logic__o__eq_sym_R' is now a registered translation.
Coq__o__Init__o__Logic__o__eq_ind_r_R is defined
'Coq__o__Init__o__Logic__o__eq_ind_r_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_wd_obligation_1_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_wd_obligation_1_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_wd_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_wd_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__subrelation_refl_R is defined
'Coq__o__Classes__o__Morphisms__o__subrelation_refl_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__respectful_R is defined
'Coq__o__Classes__o__Morphisms__o__respectful_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__Transitive_R is defined
'Coq__o__Classes__o__RelationClasses__o__Transitive_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__transitivity_R is defined
'Coq__o__Classes__o__RelationClasses__o__transitivity_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__trans_co_impl_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms__o__trans_co_impl_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__trans_co_impl_morphism_R is defined
'Coq__o__Classes__o__Morphisms__o__trans_co_impl_morphism_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__Symmetric_R is defined
'Coq__o__Classes__o__RelationClasses__o__Symmetric_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__Reflexive_R is defined
'Coq__o__Classes__o__RelationClasses__o__Reflexive_R' is now a registered translation.
Equivalence_R is defined
Coq__o__Classes__o__RelationClasses__o__Equivalence_Transitive_R is defined
'Coq__o__Classes__o__RelationClasses__o__Equivalence_Transitive_R' is now a registered translation.
PER_R is defined
Coq__o__Classes__o__RelationClasses__o__PER_Symmetric_R is defined
'Coq__o__Classes__o__RelationClasses__o__PER_Symmetric_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__symmetry_R is defined
'Coq__o__Classes__o__RelationClasses__o__symmetry_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__PER_Transitive_R is defined
'Coq__o__Classes__o__RelationClasses__o__PER_Transitive_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__PER_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms__o__PER_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__PER_morphism_R is defined
'Coq__o__Classes__o__Morphisms__o__PER_morphism_R' is now a registered translation.
Coq__o__Init__o__Nat__o__pred_R is defined
'Coq__o__Init__o__Nat__o__pred_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__Equivalence_Symmetric_R is defined
'Coq__o__Classes__o__RelationClasses__o__Equivalence_Symmetric_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__Equivalence_PER_R is defined
'Coq__o__Classes__o__RelationClasses__o__Equivalence_PER_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__pred_succ_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__pred_succ_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__reflexive_proper_proxy_R is defined
'Coq__o__Classes__o__Morphisms__o__reflexive_proper_proxy_R' is now a registered translation.
Coq__o__Init__o__Logic__o__and_rect_R is defined
'Coq__o__Init__o__Logic__o__and_rect_R' is now a registered translation.
Coq__o__Init__o__Logic__o__and_ind_R is defined
'Coq__o__Init__o__Logic__o__and_ind_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__iff_impl_subrelation_R is defined
'Coq__o__Classes__o__Morphisms__o__iff_impl_subrelation_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__pred_wd_obligation_1_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__pred_wd_obligation_1_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__pred_wd_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__pred_wd_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__Equivalence_Reflexive_R is defined
'Coq__o__Classes__o__RelationClasses__o__Equivalence_Reflexive_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__subrelation_respectful_R is defined
'Coq__o__Classes__o__Morphisms__o__subrelation_respectful_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__eq_Reflexive_R is defined
'Coq__o__Classes__o__RelationClasses__o__eq_Reflexive_R' is now a registered translation.
Coq__o__Init__o__Logic__o__eq_trans_R is defined
'Coq__o__Init__o__Logic__o__eq_trans_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__eq_Transitive_R is defined
'Coq__o__Classes__o__RelationClasses__o__eq_Transitive_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__eq_Symmetric_R is defined
'Coq__o__Classes__o__RelationClasses__o__eq_Symmetric_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__eq_equivalence_R is defined
'Coq__o__Classes__o__RelationClasses__o__eq_equivalence_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__eq_equiv_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__eq_equiv_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_inj_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_inj_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_inj_wd_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_inj_wd_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__ProperProxy_R is defined
'Coq__o__Classes__o__Morphisms__o__ProperProxy_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__Reflexive_partial_app_morphism_R is defined
'Coq__o__Classes__o__Morphisms__o__Reflexive_partial_app_morphism_R' is now a registered translation.
Coq__o__Init__o__Logic__o__False_rect_R is defined
'Coq__o__Init__o__Logic__o__False_rect_R' is now a registered translation.
Coq__o__Init__o__Logic__o__False_ind_R is defined
'Coq__o__Init__o__Logic__o__False_ind_R' is now a registered translation.
Coq__o__Init__o__Logic__o__iff_sym_R is defined
'Coq__o__Init__o__Logic__o__iff_sym_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__iff_Symmetric_R is defined
'Coq__o__Classes__o__RelationClasses__o__iff_Symmetric_R' is now a registered translation.
Coq__o__Init__o__Logic__o__iff_trans_R is defined
'Coq__o__Init__o__Logic__o__iff_trans_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__iff_Transitive_R is defined
'Coq__o__Classes__o__RelationClasses__o__iff_Transitive_R' is now a registered translation.
Coq__o__Init__o__Logic__o__iff_refl_R is defined
'Coq__o__Init__o__Logic__o__iff_refl_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__iff_Reflexive_R is defined
'Coq__o__Classes__o__RelationClasses__o__iff_Reflexive_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__iff_equivalence_R is defined
'Coq__o__Classes__o__RelationClasses__o__iff_equivalence_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__per_partial_app_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms__o__per_partial_app_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__per_partial_app_morphism_R is defined
'Coq__o__Classes__o__Morphisms__o__per_partial_app_morphism_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__trans_sym_co_inv_impl_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms__o__trans_sym_co_inv_impl_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__trans_sym_co_inv_impl_morphism_R is defined
'Coq__o__Classes__o__Morphisms__o__trans_sym_co_inv_impl_morphism_R' is now a registered translation.
Coq__o__Program__o__Basics__o__flip_R is defined
'Coq__o__Program__o__Basics__o__flip_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__reflexivity_R is defined
'Coq__o__Classes__o__RelationClasses__o__reflexivity_R' is now a registered translation.
comparison_R is defined
comparison_R_rect is defined
comparison_R_ind is defined
comparison_R_rec is defined
Coq__o__Init__o__Nat__o__compare_R is defined
'Coq__o__Init__o__Nat__o__compare_R' is now a registered translation.
or_R is defined
or_R_ind is defined
Coq__o__Init__o__Logic__o__or_ind_R is defined
'Coq__o__Init__o__Logic__o__or_ind_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__trans_co_eq_inv_impl_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms__o__trans_co_eq_inv_impl_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__trans_co_eq_inv_impl_morphism_R is defined
'Coq__o__Classes__o__Morphisms__o__trans_co_eq_inv_impl_morphism_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__eq_proper_proxy_R is defined
'Coq__o__Classes__o__Morphisms__o__eq_proper_proxy_R' is now a registered translation.
Coq__o__Classes__o__Morphisms_Prop__o__or_iff_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms_Prop__o__or_iff_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms_Prop__o__or_iff_morphism_R is defined
'Coq__o__Classes__o__Morphisms_Prop__o__or_iff_morphism_R' is now a registered translation.
Coq__o__Init__o__Datatypes__o__nat_rect_R is defined
'Coq__o__Init__o__Datatypes__o__nat_rect_R' is now a registered translation.
Coq__o__Init__o__Datatypes__o__nat_ind_R is defined
'Coq__o__Init__o__Datatypes__o__nat_ind_R' is now a registered translation.
Coq__o__Init__o__Logic__o__f_equal_R is defined
'Coq__o__Init__o__Logic__o__f_equal_R' is now a registered translation.
Coq__o__Init__o__Peano__o__f_equal_nat_R is defined
'Coq__o__Init__o__Peano__o__f_equal_nat_R' is now a registered translation.
Coq__o__Init__o__Peano__o__eq_add_S_R is defined
'Coq__o__Init__o__Peano__o__eq_add_S_R' is now a registered translation.
True_R is defined
True_R_rect is defined
True_R_ind is defined
True_R_rec is defined
Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_eq_iff_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_eq_iff_R' is now a registered translation.
Coq__o__Init__o__Peano__o__le_0_n_R is defined
'Coq__o__Init__o__Peano__o__le_0_n_R' is now a registered translation.
Coq__o__Init__o__Peano__o__le_ind_R is defined
'Coq__o__Init__o__Peano__o__le_ind_R' is now a registered translation.
Coq__o__Init__o__Peano__o__le_pred_R is defined
'Coq__o__Init__o__Peano__o__le_pred_R' is now a registered translation.
Coq__o__Init__o__Peano__o__le_S_n_R is defined
'Coq__o__Init__o__Peano__o__le_S_n_R' is now a registered translation.
Coq__o__Init__o__Peano__o__le_n_S_R is defined
'Coq__o__Init__o__Peano__o__le_n_S_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_le_iff_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_le_iff_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_lt_iff_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_lt_iff_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_eq_cases_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_eq_cases_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_refl_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_refl_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__iff_flip_impl_subrelation_R is defined
'Coq__o__Classes__o__Morphisms__o__iff_flip_impl_subrelation_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_succ_r_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_succ_r_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_succ_diag_r_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_succ_diag_r_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_wd_obligation_1_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_wd_obligation_1_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_wd_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_wd_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_refl_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__compare_refl_R' is now a registered translation.
Coq__o__Classes__o__Morphisms_Prop__o__not_iff_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms_Prop__o__not_iff_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms_Prop__o__not_iff_morphism_R is defined
'Coq__o__Classes__o__Morphisms_Prop__o__not_iff_morphism_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_irrefl_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_irrefl_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__neq_succ_diag_l_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__neq_succ_diag_l_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_le_incl_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_le_incl_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__nlt_succ_diag_l_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__nlt_succ_diag_l_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__nle_succ_diag_l_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__nle_succ_diag_l_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__bi_induction_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__bi_induction_R' is now a registered translation.
Coq__o__Classes__o__Morphisms_Prop__o__iff_iff_iff_impl_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms_Prop__o__iff_iff_iff_impl_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms_Prop__o__iff_iff_iff_impl_morphism_R is defined
'Coq__o__Classes__o__Morphisms_Prop__o__iff_iff_iff_impl_morphism_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__central_induction_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__central_induction_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_wd_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_wd_R' is now a registered translation.
Coq__o__Init__o__Logic__o__or_iff_compat_r_R is defined
'Coq__o__Init__o__Logic__o__or_iff_compat_r_R' is now a registered translation.
Coq__o__Init__o__Logic__o__or_cancel_r_R is defined
'Coq__o__Init__o__Logic__o__or_cancel_r_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_succ_l_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_succ_l_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_lt_mono_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__succ_lt_mono_R' is now a registered translation.
Coq__o__Arith__o__Lt__o__lt_S_n_R is defined
'Coq__o__Arith__o__Lt__o__lt_S_n_R' is now a registered translation.
Acc_R is defined
Acc_R_rect is defined
Acc_R_ind is defined
Acc_R_rec is defined
Coq__o__Init__o__Wf__o__Acc_inv_R is defined
'Coq__o__Init__o__Wf__o__Acc_inv_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__complement_R is defined
'Coq__o__Classes__o__RelationClasses__o__complement_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__Irreflexive_R is defined
'Coq__o__Classes__o__RelationClasses__o__Irreflexive_R' is now a registered translation.
StrictOrder_R is defined
Coq__o__Classes__o__RelationClasses__o__StrictOrder_Transitive_R is defined
'Coq__o__Classes__o__RelationClasses__o__StrictOrder_Transitive_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_asymm_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_asymm_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_trans_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_trans_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_strorder_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_strorder_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__IsTotal__o__lt_strorder_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__IsTotal__o__lt_strorder_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_lteq_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_lteq_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__IsTotal__o__le_lteq_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__IsTotal__o__le_lteq_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_compat_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_compat_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__IsTotal__o__lt_compat_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__IsTotal__o__lt_compat_R' is now a registered translation.
ord_R is defined
ord_R_rect is defined
ord_R_ind is defined
ord_R_rec is defined
Coq__o__Structures__o__OrdersTac__o__trans_ord_R is defined
'Coq__o__Structures__o__OrdersTac__o__trans_ord_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__IsTotal__o__eq_equiv_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__IsTotal__o__eq_equiv_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__interp_ord_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__interp_ord_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__trans_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__trans_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__le_lt_trans_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__le_lt_trans_R' is now a registered translation.
Coq__o__Classes__o__RelationClasses__o__StrictOrder_Irreflexive_R is defined
'Coq__o__Classes__o__RelationClasses__o__StrictOrder_Irreflexive_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__lt_irrefl_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__lt_irrefl_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_gt_cases_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_gt_cases_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_trichotomy_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_trichotomy_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_total_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_total_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__IsTotal__o__lt_total_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__IsTotal__o__lt_total_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__not_ge_lt_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__not_ge_lt_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_le_trans_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_le_trans_R' is now a registered translation.
Coq__o__Arith__o__Wf_nat__o__ltof_R is defined
'Coq__o__Arith__o__Wf_nat__o__ltof_R' is now a registered translation.
Coq__o__Arith__o__Lt__o__lt_n_Sm_le_R is defined
'Coq__o__Arith__o__Lt__o__lt_n_Sm_le_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__lt_eq_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__lt_eq_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__not_gt_le_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__not_gt_le_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__eq_le_incl_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__eq_le_incl_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__lt_trans_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__Private_OrderTac__o__Tac__o__lt_trans_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_le_succ_r_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_le_succ_r_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_succ_r_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_succ_r_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__pred_0_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__pred_0_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__neq_succ_0_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__neq_succ_0_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_0_l_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_0_l_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_ngt_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_ngt_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__nlt_0_r_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__nlt_0_r_R' is now a registered translation.
Coq__o__Init__o__Wf__o__well_founded_R is defined
'Coq__o__Init__o__Wf__o__well_founded_R' is now a registered translation.
Coq__o__Arith__o__Wf_nat__o__well_founded_ltof_R is defined
'Coq__o__Arith__o__Wf_nat__o__well_founded_ltof_R' is now a registered translation.
Coq__o__Arith__o__Wf_nat__o__lt_wf_R is defined
'Coq__o__Arith__o__Wf_nat__o__lt_wf_R' is now a registered translation.
Top__o__NNmod_upper_bound_R is defined
'Top__o__NNmod_upper_bound_R' is now a registered translation.
Top__o__GcdS_tcc_R is defined
'Top__o__GcdS_tcc_R' is now a registered translation.
max_type_R is defined
max_type_R_rect is defined
max_type_R_ind is defined
max_type_R_rec is defined
Coq__o__funind__o__Recdef__o__max_type_rect_R is defined
'Coq__o__funind__o__Recdef__o__max_type_rect_R' is now a registered translation.
Coq__o__funind__o__Recdef__o__max_type_ind_R is defined
'Coq__o__funind__o__Recdef__o__max_type_ind_R' is now a registered translation.
ex_R is defined
ex_R_ind is defined
Coq__o__Init__o__Logic__o__ex_ind_R is defined
'Coq__o__Init__o__Logic__o__ex_ind_R' is now a registered translation.
Coq__o__Arith__o__Lt__o__lt_n_S_R is defined
'Coq__o__Arith__o__Lt__o__lt_n_S_R' is now a registered translation.
Coq__o__Init__o__Datatypes__o__nat_rec_R is defined
'Coq__o__Init__o__Datatypes__o__nat_rec_R' is now a registered translation.
Coq__o__Init__o__Peano__o__gt_R is defined
'Coq__o__Init__o__Peano__o__gt_R' is now a registered translation.
Coq__o__Arith__o__Lt__o__lt_le_S_R is defined
'Coq__o__Arith__o__Lt__o__lt_le_S_R' is now a registered translation.
Coq__o__Arith__o__Gt__o__gt_le_S_R is defined
'Coq__o__Arith__o__Gt__o__gt_le_S_R' is now a registered translation.
Coq__o__Init__o__Logic__o__all_R is defined
'Coq__o__Init__o__Logic__o__all_R' is now a registered translation.
Coq__o__Classes__o__Morphisms__o__pointwise_relation_R is defined
'Coq__o__Classes__o__Morphisms__o__pointwise_relation_R' is now a registered translation.
Coq__o__Classes__o__Morphisms_Prop__o__all_iff_morphism_obligation_1_R is defined
'Coq__o__Classes__o__Morphisms_Prop__o__all_iff_morphism_obligation_1_R' is now a registered translation.
Coq__o__Classes__o__Morphisms_Prop__o__all_iff_morphism_R is defined
'Coq__o__Classes__o__Morphisms_Prop__o__all_iff_morphism_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_exists_pred_strong_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_exists_pred_strong_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_exists_pred_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_exists_pred_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__rs_rs'_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__rs_rs'_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__A'A_right_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__A'A_right_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__rbase_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__rbase_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_lt_succ_r_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_lt_succ_r_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__rs'_rs''_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__rs'_rs''_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__strong_right_induction_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__strong_right_induction_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__right_induction_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__right_induction_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__induction_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__induction_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_0_succ_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__lt_0_succ_R' is now a registered translation.
Coq__o__Arith__o__Le__o__le_n_S_R is defined
'Coq__o__Arith__o__Le__o__le_n_S_R' is now a registered translation.
sumbool_R is defined
sumbool_R_rect is defined
sumbool_R_ind is defined
sumbool_R_rec is defined
Coq__o__Init__o__Specif__o__sumbool_rect_R is defined
'Coq__o__Init__o__Specif__o__sumbool_rect_R' is now a registered translation.
Coq__o__Init__o__Specif__o__sumbool_rec_R is defined
'Coq__o__Init__o__Specif__o__sumbool_rec_R' is now a registered translation.
Coq__o__Arith__o__Compare_dec__o__le_lt_dec_R is defined
'Coq__o__Arith__o__Compare_dec__o__le_lt_dec_R' is now a registered translation.
Coq__o__Arith__o__Compare_dec__o__le_gt_dec_R is defined
'Coq__o__Arith__o__Compare_dec__o__le_gt_dec_R' is now a registered translation.
Coq__o__funind__o__Recdef__o__max_R is defined
'Coq__o__funind__o__Recdef__o__max_R' is now a registered translation.
Coq__o__Init__o__Logic__o__and_rec_R is defined
'Coq__o__Init__o__Logic__o__and_rec_R' is now a registered translation.
Coq__o__Arith__o__PeanoNat__o__Nat__o__le_lt_trans_R is defined
'Coq__o__Arith__o__PeanoNat__o__Nat__o__le_lt_trans_R' is now a registered translation.

Anomaly: Uncaught exception Not_found. Please report at
http://coq.inria.fr/bugs/.
*)