1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
Require Import List.
Require Import Parametricity.
Lemma nat_R_equal :
forall x y, nat_R x y -> x = y.
intros x y H; induction H; subst; trivial.
Defined.
Lemma equal_nat_R :
forall x y, x = y -> nat_R x y.
intros x y H; subst.
induction y; constructor; trivial.
Defined.
Definition full_relation {A B} (x : A) (y : B) := True.
Definition same_length {A B} := list_R A B full_relation.
Lemma same_length_length :
forall A B (l1 : list A) (l2 : list B),
same_length l1 l2 -> length l1 = length l2.
intros A B l1 l2 H.
induction H; simpl.
reflexivity.
exact (f_equal S IHlist_R).
Qed.
Lemma length_same_length :
forall A B (l1 : list A) (l2 : list B),
length l1 = length l2 -> same_length l1 l2.
admit. (* exercise :) *)
Admitted.
Module LengthType.
Definition T := forall X, list X -> nat.
Parametricity T.
Definition FREE_THEOREM (f : T) :=
forall A l1 l2, same_length l1 l2 -> f A l1 = f A l2.
Lemma param_length_type :
forall f (f_R : T_R f f), FREE_THEOREM f.
repeat intro.
apply nat_R_equal.
apply (f_R A A (fun _ _ => True)).
assumption.
Qed.
Parametricity length.
Definition length_rev : T := fun A l => length (rev l).
Parametricity Recursive length_rev.
Definition double_length : T := fun A l => length (l ++ l).
Parametricity Recursive double_length.
Definition constant : T := fun A l => 42.
Parametricity constant.
Definition length_free_theorem : FREE_THEOREM length
:= param_length_type length length_R.
Definition double_length_free_theorem : FREE_THEOREM double_length
:= param_length_type double_length double_length_R.
Definition constant_free_theorem : FREE_THEOREM constant
:= param_length_type constant constant_R.
End LengthType.
Definition graph {A B} (f : A -> B) := fun x y => f x = y.
Definition map_rel {A B} (f : A -> B) :=
list_R A B (graph f).
Lemma map_rel_map A B (f : A -> B) :
forall (l : list A), map_rel f l (map f l).
induction l; constructor; compute; auto.
Defined.
Lemma rel_map_map A B (f : A -> B) :
forall (l: list A) fl, map_rel f l fl -> fl = map f l.
intros; induction X; unfold graph in *; subst; reflexivity.
Defined.
Module RevType.
Definition T := forall X, list X -> list X.
Parametricity T.
Definition FREE_THEOREM (F : T) :=
forall A B (f : A -> B) l,
F B (map f l) = map f (F A l).
Lemma param_naturality :
forall F (F_R : T_R F F), FREE_THEOREM F.
repeat intro.
apply rel_map_map.
apply F_R.
apply map_rel_map.
Defined.
Parametricity rev.
Definition tail : T := fun A l =>
match l with
| nil => nil
| hd :: tl => tl
end.
Parametricity tail.
Definition rev_rev : T := fun A l => rev (rev l).
Parametricity rev_rev.
Definition rev_naturality : FREE_THEOREM rev
:= param_naturality rev rev_R.
Definition rev_rev_naturality : FREE_THEOREM rev_rev
:= param_naturality rev_rev rev_rev_R.
Definition tail_naturality : FREE_THEOREM tail
:= param_naturality tail tail_R.
End RevType.
Parametricity prod.
Definition prod_map {A B} (f : A -> B)
{A' B'} (f' : A' -> B') :=
prod_R A B (graph f) A' B' (graph f').
Definition pair {A B} (f : A -> B) {A' B'} (f' : A' -> B') : A * A' -> B * B' :=
fun c => let (x, x') := c in (f x, f' x').
Lemma pair_prod_map :
forall A B (f : A -> B)
A' B' (f' : A' -> B') xy xy',
graph (pair f f') xy xy' -> prod_map f f' xy xy'.
intros ? ? f ? ? f' [x y] [x' y'].
intro H.
compute in H.
injection H.
intros; subst.
constructor; reflexivity.
Defined.
Lemma prod_map_pair :
forall A B (f : A -> B)
A' B' (f' : A' -> B') xy xy',
prod_map f f' xy xy' -> graph (pair f f') xy xy'.
intros ? ? f ? ? f' [x y] [x' y'].
intro H.
compute in H.
induction H; subst.
reflexivity.
Defined.
Lemma list_R_prod_map A B (f : A -> B) A' B' (f' : A' -> B') l1 l2 :
list_R _ _ (prod_map f f') l1 l2 -> list_R _ _ (graph (pair f f')) l1 l2.
intro H; induction H; constructor; [ apply prod_map_pair|]; auto.
Defined.
Module ZipType.
Definition T :=
forall X Y, list X -> list Y -> list (X * Y).
Parametricity T.
Definition FREE_THEOREM (F : T) := forall
A B (f : A -> B)
A' B' (f' : A' -> B') l l',
F B B' (map f l) (map f' l') = map (pair f f') (F A A' l l').
Lemma param_ZIP_naturality :
forall F (F_R : T_R F F), FREE_THEOREM F.
repeat intro.
specialize (F_R A B (graph f) A' B' (graph f') l (map f l) (map_rel_map _ _ _ _) l' (map f' l') (map_rel_map _ _ _ _)).
apply rel_map_map.
unfold map_rel.
apply list_R_prod_map.
unfold prod_map.
assumption.
Defined.
Fixpoint zip {X Y} (l1 : list X) (l2 : list Y) : list (X * Y) :=
match l1, l2 with
| nil, _ => nil
| _, nil => nil
| x::tl1, y::tl2 => (x,y)::(zip tl1 tl2)
end.
Parametricity zip.
Definition zip_free_theorem : FREE_THEOREM (@zip) := param_ZIP_naturality _ zip_R.
End ZipType.
|