1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkDijkstraGraphGeodesicPath.h,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkDijkstraGraphGeodesicPath - Dijkstra algorithm to compute the graph geodesic.
// .SECTION Description
// Takes as input a polygonal mesh and performs a single source shortest
// path calculation. Dijkstra's algorithm is used. The implementation is
// similar to the one described in Introduction to Algorithms (Second Edition)
// by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
// Cliff Stein, published by MIT Press and McGraw-Hill. Some minor
// enhancement are added though. All vertices are not pushed on the heap
// at start, instead a front set is maintained. The heap is implemented as
// a binary heap. The output of the filter is a set of lines describing
// the shortest path from StartVertex to EndVertex.
//
// .SECTION Caveats
// The input polydata must have only triangle cells.
//
// .SECTION Thanks
// The class was contributed by Rasmus Paulsen.
// www.imm.dtu.dk/~rrp/VTK . Also thanks to Alexandre Gouaillard and Shoaib
// Ghias for bug fixes and enhancements.
#ifndef __vtkDijkstraGraphGeodesicPath_h
#define __vtkDijkstraGraphGeodesicPath_h
#include "vtkGraphGeodesicPath.h"
class vtkDoubleArray;
class vtkIntArray;
class vtkIdList;
class vtkFloatArray;
class VTK_GRAPHICS_EXPORT vtkDijkstraGraphGeodesicPath :
public vtkGraphGeodesicPath
{
public:
// Description:
// Instantiate the class
static vtkDijkstraGraphGeodesicPath *New();
// Description:
// Standard methids for printing and determining type information.
vtkTypeRevisionMacro(vtkDijkstraGraphGeodesicPath,vtkGraphGeodesicPath);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// The vertex ids (of the input polydata) on the shortest path
vtkGetObjectMacro(IdList, vtkIdList);
// Description:
// Get the summed weight for all vertices
vtkGetObjectMacro(d, vtkFloatArray);
// Description:
// Stop when the end vertex is reached
// or calculate shortest path to all vertices
vtkSetMacro(StopWhenEndReached, int);
vtkGetMacro(StopWhenEndReached, int);
vtkBooleanMacro(StopWhenEndReached, int);
// Description:
// Use scalar values in the edge weight (experimental)
vtkSetMacro(UseScalarWeights, int);
vtkGetMacro(UseScalarWeights, int);
vtkBooleanMacro(UseScalarWeights, int);
// Description:
// TODO: Get the total geodesic length.
virtual double GetGeodesicLength() { return 0.0; }
protected:
vtkDijkstraGraphGeodesicPath();
~vtkDijkstraGraphGeodesicPath();
virtual int RequestData(vtkInformation *, vtkInformationVector **,
vtkInformationVector *);
// Build a graph description of the mesh
void BuildAdjacency(vtkPolyData *pd);
void DeleteAdjacency();
vtkTimeStamp AdjacencyBuildTime;
// The cost going from vertex u to v
// TODO: should be implemented as a user supplied
// callback function
double CalculateEdgeCost(vtkPolyData *pd, vtkIdType u, vtkIdType v);
void Initialize();
void Reset();
// structure the heap
void Heapify(int i);
// insert vertex v in heap. Weight is in d(v)
void HeapInsert(int v);
// extract vertex with min d(v)
int HeapExtractMin();
// Update heap when key d(v) has been decreased
void HeapDecreaseKey(int v);
void InitSingleSource(int startv);
// Calculate shortest path from vertex startv to vertex endv
void ShortestPath(int startv, int endv);
// Relax edge u,v with weight w
void Relax(int u, int v, double w);
// Backtrace the shortest path
void TraceShortestPath(vtkPolyData *inPd, vtkPolyData *outPd,
vtkIdType startv, vtkIdType endv);
// the number of vertices
int NumberOfVertices;
// d(v) current summed weight for path to vertex v
vtkFloatArray *d;
// pre(v) predecessor of v
vtkIntArray *pre;
// f is the set of vertices wich has not a shortest path yet but has a path
// ie. the front set (f(v) == 1 means that vertex v is in f)
vtkIntArray *f;
// s is the set of vertices with already determined shortest path
// s(v) == 1 means that vertex v is in s
vtkIntArray *s;
// the priority que (a binary heap) with vertex indices
vtkIntArray *Heap;
// The real number of elements in H != H.size()
int HeapSize;
// p(v) the position of v in H (p and H are kind of inverses)
vtkIntArray *p;
// The vertex ids on the shortest path
vtkIdList *IdList;
// Adjacency representation
vtkIdList **Adjacency;
int StopWhenEndReached;
int UseScalarWeights;
// Used to remember the size of the graph. If the filter is re-used.
int AdjacencyGraphSize;
private:
vtkDijkstraGraphGeodesicPath(const vtkDijkstraGraphGeodesicPath&); // Not implemented.
void operator=(const vtkDijkstraGraphGeodesicPath&); // Not implemented.
};
#endif
|