1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
|
/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkOpenGLRayCastImageDisplayHelper.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkOpenGLRayCastImageDisplayHelper.h"
#include "vtkMatrix4x4.h"
#include "vtkObjectFactory.h"
#include "vtkVolume.h"
#include "vtkRenderer.h"
#include "vtkTransform.h"
#include "vtkCamera.h"
#include "vtkFixedPointRayCastImage.h"
#ifndef VTK_IMPLEMENT_MESA_CXX
# include "vtkOpenGL.h"
#endif
#include <math.h>
#ifndef VTK_IMPLEMENT_MESA_CXX
vtkCxxRevisionMacro(vtkOpenGLRayCastImageDisplayHelper, "$Revision: 1.4 $");
vtkStandardNewMacro(vtkOpenGLRayCastImageDisplayHelper);
#endif
// Construct a new vtkOpenGLRayCastImageDisplayHelper with default values
vtkOpenGLRayCastImageDisplayHelper::vtkOpenGLRayCastImageDisplayHelper()
{
}
// Destruct a vtkOpenGLRayCastImageDisplayHelper - clean up any memory used
vtkOpenGLRayCastImageDisplayHelper::~vtkOpenGLRayCastImageDisplayHelper()
{
}
// imageMemorySize is how big the texture is - this is always a power of two
//
// imageViewportSize is how big the renderer viewport is in pixels
//
// imageInUseSize is the rendered image - equal or smaller than imageMemorySize
// and imageViewportSize
//
// imageOrigin is the starting pixel of the imageInUseSize image on the
// the imageViewportSize viewport
//
void vtkOpenGLRayCastImageDisplayHelper::RenderTexture( vtkVolume *vol,
vtkRenderer *ren,
vtkFixedPointRayCastImage *image,
float requestedDepth )
{
this->RenderTextureInternal( vol, ren, image->GetImageMemorySize(), image->GetImageViewportSize(),
image->GetImageInUseSize(), image->GetImageOrigin(),
requestedDepth, VTK_UNSIGNED_SHORT, image->GetImage() );
}
void vtkOpenGLRayCastImageDisplayHelper::RenderTexture( vtkVolume *vol,
vtkRenderer *ren,
int imageMemorySize[2],
int imageViewportSize[2],
int imageInUseSize[2],
int imageOrigin[2],
float requestedDepth,
unsigned char *image )
{
this->RenderTextureInternal( vol, ren, imageMemorySize, imageViewportSize,
imageInUseSize, imageOrigin, requestedDepth,
VTK_UNSIGNED_CHAR, static_cast<void *>(image) );
}
void vtkOpenGLRayCastImageDisplayHelper::RenderTexture( vtkVolume *vol,
vtkRenderer *ren,
int imageMemorySize[2],
int imageViewportSize[2],
int imageInUseSize[2],
int imageOrigin[2],
float requestedDepth,
unsigned short *image )
{
this->RenderTextureInternal( vol, ren, imageMemorySize, imageViewportSize,
imageInUseSize, imageOrigin, requestedDepth,
VTK_UNSIGNED_SHORT, static_cast<void *>(image) );
}
void vtkOpenGLRayCastImageDisplayHelper::RenderTextureInternal( vtkVolume *vol,
vtkRenderer *ren,
int imageMemorySize[2],
int imageViewportSize[2],
int imageInUseSize[2],
int imageOrigin[2],
float requestedDepth,
int imageScalarType,
void *image )
{
int i;
float offsetX, offsetY;
float xMinOffset, xMaxOffset, yMinOffset, yMaxOffset;
float tcoords[8];
float depth;
if ( requestedDepth > 0.0 && requestedDepth <= 1.0 )
{
depth = requestedDepth;
}
else
{
// Pass the center of the volume through the world to view function
// of the renderer to get the z view coordinate to use for the
// view to world transformation of the image bounds. This way we
// will draw the image at the depth of the center of the volume
ren->SetWorldPoint( vol->GetCenter()[0],
vol->GetCenter()[1],
vol->GetCenter()[2],
1.0 );
ren->WorldToView();
depth = ren->GetViewPoint()[2];
}
// Convert the four corners of the image into world coordinates
float verts[12];
vtkMatrix4x4 *viewToWorldMatrix = vtkMatrix4x4::New();
float in[4], out[4];
vtkCamera *cam = ren->GetActiveCamera();
ren->ComputeAspect();
double *aspect = ren->GetAspect();
vtkTransform *perspectiveTransform = vtkTransform::New();
perspectiveTransform->Identity();
perspectiveTransform->Concatenate(
cam->GetPerspectiveTransformMatrix(aspect[0]/aspect[1],
0.0, 1.0 ));
perspectiveTransform->Concatenate(cam->GetViewTransformMatrix());
// get the perspective transformation from the active camera
viewToWorldMatrix->DeepCopy( perspectiveTransform->GetMatrix() );
perspectiveTransform->Delete();
// use the inverse matrix
viewToWorldMatrix->Invert();
// These two values never change
in[2] = depth;
in[3] = 1.0;
// This is the lower left corner
in[0] = (float)imageOrigin[0]/imageViewportSize[0] * 2.0 - 1.0;
in[1] = (float)imageOrigin[1]/imageViewportSize[1] * 2.0 - 1.0;
viewToWorldMatrix->MultiplyPoint( in, out );
verts[0] = out[0] / out[3];
verts[1] = out[1] / out[3];
verts[2] = out[2] / out[3];
// This is the lower right corner
in[0] = (float)(imageOrigin[0]+imageInUseSize[0]) /
imageViewportSize[0] * 2.0 - 1.0;
in[1] = (float)imageOrigin[1]/imageViewportSize[1] * 2.0 - 1.0;
viewToWorldMatrix->MultiplyPoint( in, out );
verts[3] = out[0] / out[3];
verts[4] = out[1] / out[3];
verts[5] = out[2] / out[3];
// This is the upper right corner
in[0] = (float)(imageOrigin[0]+imageInUseSize[0]) /
imageViewportSize[0] * 2.0 - 1.0;
in[1] = (float)(imageOrigin[1]+imageInUseSize[1]) /
imageViewportSize[1] * 2.0 - 1.0;
viewToWorldMatrix->MultiplyPoint( in, out );
verts[6] = out[0] / out[3];
verts[7] = out[1] / out[3];
verts[8] = out[2] / out[3];
// This is the upper left corner
in[0] = (float)imageOrigin[0]/imageViewportSize[0] * 2.0 - 1.0;
in[1] = (float)(imageOrigin[1]+imageInUseSize[1]) /
imageViewportSize[1] * 2.0 - 1.0;
viewToWorldMatrix->MultiplyPoint( in, out );
verts[9] = out[0] / out[3];
verts[10] = out[1] / out[3];
verts[11] = out[2] / out[3];
viewToWorldMatrix->Delete();
// Save state
glPushAttrib(GL_ENABLE_BIT |
GL_COLOR_BUFFER_BIT |
GL_STENCIL_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT |
GL_POLYGON_BIT |
GL_PIXEL_MODE_BIT |
GL_TEXTURE_BIT);
glPixelTransferf( GL_RED_SCALE, this->PixelScale );
glPixelTransferf( GL_GREEN_SCALE, this->PixelScale );
glPixelTransferf( GL_BLUE_SCALE, this->PixelScale );
glPixelTransferf( GL_ALPHA_SCALE, this->PixelScale );
if ( this->PreMultipliedColors )
{
// Values in the texture map have already been pre-multiplied by alpha
glBlendFunc( GL_ONE, GL_ONE_MINUS_SRC_ALPHA );
}
else
{
// Values in the texture map have not been pre-multiplied by alpha
glBlendFunc( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
}
// Turn lighting off - the texture already has illumination in it
glDisable( GL_LIGHTING );
// Turn texturing on so that we can draw the textured hexagon
glEnable( GL_TEXTURE_2D );
#ifdef GL_VERSION_1_1
GLuint tempIndex;
glGenTextures(1, &tempIndex);
glBindTexture(GL_TEXTURE_2D, tempIndex);
#endif
// Don't write into the Zbuffer - just use it for comparisons
glDepthMask( 0 );
glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
// Specify the texture
glColor3f(1.0,1.0,1.0);
int newTextureSize[2];
#ifdef GL_VERSION_1_1
if ( imageScalarType == VTK_UNSIGNED_CHAR )
{
// Test the texture to see if it fits in memory
glTexImage2D( GL_PROXY_TEXTURE_2D, 0, GL_RGBA8,
imageMemorySize[0], imageMemorySize[1],
0, GL_RGBA, GL_UNSIGNED_BYTE,
static_cast<unsigned char *>(image) );
}
else
{
// Test the texture to see if it fits in memory
glTexImage2D( GL_PROXY_TEXTURE_2D, 0, GL_RGBA8,
imageMemorySize[0], imageMemorySize[1],
0, GL_RGBA, GL_UNSIGNED_SHORT,
static_cast<unsigned short *>(image) );
}
GLint params[1];
glGetTexLevelParameteriv ( GL_PROXY_TEXTURE_2D, 0,
GL_TEXTURE_WIDTH, params );
// if it does, we will render it later. define the texture here
if ( params[0] != 0 )
{
if ( imageScalarType == VTK_UNSIGNED_CHAR )
{
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA8,
imageMemorySize[0], imageMemorySize[1],
0, GL_RGBA, GL_UNSIGNED_BYTE,
static_cast<unsigned char *>(image) );
}
else
{
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA8,
imageMemorySize[0], imageMemorySize[1],
0, GL_RGBA, GL_UNSIGNED_SHORT,
static_cast<unsigned short *>(image) );
}
}
// if it doesn't, we are going to break it up now and render it.
// That's because we want this in the ifdef because this only works in
// 1.1 and later.
else
{
// Figure out our new texture size. Keep dividing the big one in half until
// OpenGL says this texture is OK
newTextureSize[0] = imageMemorySize[0];
newTextureSize[1] = imageMemorySize[1];
while ( params[0] == 0 && newTextureSize[0] >= 32 &&
newTextureSize[1] >= 32 )
{
if ( newTextureSize[0] > newTextureSize[1] )
{
newTextureSize[0] /= 2;
}
else
{
newTextureSize[1] /= 2;
}
if ( imageScalarType == VTK_UNSIGNED_CHAR )
{
glTexImage2D( GL_PROXY_TEXTURE_2D, 0, GL_RGBA8,
newTextureSize[0], newTextureSize[1],
0, GL_RGBA, GL_UNSIGNED_BYTE,
static_cast<unsigned char *>(image) );
}
else
{
glTexImage2D( GL_PROXY_TEXTURE_2D, 0, GL_RGBA8,
newTextureSize[0], newTextureSize[1],
0, GL_RGBA, GL_UNSIGNED_SHORT,
static_cast<unsigned short *>(image) );
}
glGetTexLevelParameteriv ( GL_PROXY_TEXTURE_2D, 0,
GL_TEXTURE_WIDTH, params );
}
// If we got down to 32 by 32 and OpenGL still doesn't like it, something
// must be seriously wrong and we will ignore it. Otherwise, we have our
// new texture size and let's start chopping up the image
if ( newTextureSize[0] >= 32 && newTextureSize[1] >= 32 )
{
// How many tiles in x?
int xLimit = 1 + static_cast<int>(
static_cast<float>(imageInUseSize[0]) /
static_cast<float>((newTextureSize[0]-2)));
// How many tiles in y?
int yLimit = 1 + static_cast<int>(
static_cast<float>(imageInUseSize[1]) /
static_cast<float>((newTextureSize[1]-2)));
// Create memory for the new texture
unsigned char *newTextureChar = NULL;
unsigned short *newTextureShort = NULL;
if ( imageScalarType == VTK_UNSIGNED_CHAR )
{
newTextureChar =
new unsigned char [newTextureSize[0] * newTextureSize[1] * 4];
}
else
{
newTextureShort =
new unsigned short [newTextureSize[0] * newTextureSize[1] * 4];
}
// This is the 1/2 pixel offset for texture coordinates
offsetX = .5 / static_cast<float>(newTextureSize[0]);
offsetY = .5 / static_cast<float>(newTextureSize[1]);
int ii, jj;
float newVerts[12];
float vx1, vx2, vy1, vy2;
int px1, py1, pxSize, pySize;
// loop through the tiles in y
for ( jj = 0; jj < yLimit; jj++ )
{
vy1 = static_cast<float>(jj) / static_cast<float>(yLimit);
vy2 = static_cast<float>(jj+1) / static_cast<float>(yLimit);
py1 = static_cast<int>(vy1 * static_cast<float>(
imageInUseSize[1]));
pySize = static_cast<int>(2 - py1 + vy2 * static_cast<float>(
imageInUseSize[1]-1));
if ( py1 + pySize > imageInUseSize[1] )
{
pySize = imageInUseSize[1] - py1;
}
yMinOffset = 2.0 * offsetY *
(vy1*static_cast<float>(imageInUseSize[1]-1)-static_cast<float>(py1));
yMaxOffset = 2.0 * offsetY *
(static_cast<float>(py1+pySize-1)-vy2*static_cast<float>(imageInUseSize[1]-1));
// loop through the tiles in x
for ( ii = 0; ii < xLimit; ii++ )
{
vx1 = static_cast<float>(ii) / static_cast<float>(xLimit);
vx2 = static_cast<float>(ii+1) / static_cast<float>(xLimit);
px1 = static_cast<int>(vx1 * static_cast<float>(
imageInUseSize[0]));
pxSize = static_cast<int>(2 - px1 + vx2 * static_cast<float>(
imageInUseSize[0]-1));
if ( px1 + pxSize > imageInUseSize[0] )
{
pxSize = imageInUseSize[0] - px1;
}
xMinOffset = 2.0 * offsetX *
(vx1*static_cast<float>(imageInUseSize[0]-1) -
static_cast<float>(px1));
xMaxOffset = 2.0 * offsetX *
(static_cast<float>(px1+pxSize-1) -
vx2*static_cast<float>(imageInUseSize[0]-1));
if ( px1 + pxSize > imageInUseSize[0] )
{
pxSize = imageInUseSize[0] - px1;
}
// copy subtexture of image into newTexture
int loop;
for ( loop = 0; loop < pySize; loop++ )
{
if ( imageScalarType == VTK_UNSIGNED_CHAR )
{
memcpy( newTextureChar + 4*loop*newTextureSize[0],
static_cast<unsigned char *>(image) +
4*(py1+loop)*imageMemorySize[0] + 4*px1,
pxSize * sizeof(unsigned char) * 4 );
}
else
{
memcpy( newTextureShort + 4*loop*newTextureSize[0],
static_cast<unsigned short *>(image) +
4*(py1+loop)*imageMemorySize[0] + 4*px1,
pxSize * sizeof(unsigned short) * 4 );
}
}
newVerts[ 0] = verts[0] + vx1*(verts[3]-verts[0]) + vy1*(verts[ 9]-verts[0]);
newVerts[ 1] = verts[1] + vx1*(verts[4]-verts[1]) + vy1*(verts[10]-verts[1]);
newVerts[ 2] = verts[2] + vx1*(verts[5]-verts[2]) + vy1*(verts[11]-verts[2]);
newVerts[ 3] = verts[0] + vx2*(verts[3]-verts[0]) + vy1*(verts[ 9]-verts[0]);
newVerts[ 4] = verts[1] + vx2*(verts[4]-verts[1]) + vy1*(verts[10]-verts[1]);
newVerts[ 5] = verts[2] + vx2*(verts[5]-verts[2]) + vy1*(verts[11]-verts[2]);
newVerts[ 6] = verts[0] + vx2*(verts[3]-verts[0]) + vy2*(verts[ 9]-verts[0]);
newVerts[ 7] = verts[1] + vx2*(verts[4]-verts[1]) + vy2*(verts[10]-verts[1]);
newVerts[ 8] = verts[2] + vx2*(verts[5]-verts[2]) + vy2*(verts[11]-verts[2]);
newVerts[ 9] = verts[0] + vx1*(verts[3]-verts[0]) + vy2*(verts[ 9]-verts[0]);
newVerts[10] = verts[1] + vx1*(verts[4]-verts[1]) + vy2*(verts[10]-verts[1]);
newVerts[11] = verts[2] + vx1*(verts[5]-verts[2]) + vy2*(verts[11]-verts[2]);
tcoords[0] = offsetX + xMinOffset;
tcoords[1] = offsetY + yMinOffset;
tcoords[2] = (float)pxSize/(float)newTextureSize[0] - offsetX - xMaxOffset;
tcoords[3] = offsetY + yMinOffset;
tcoords[4] = (float)pxSize/(float)newTextureSize[0] - offsetX - xMaxOffset;
tcoords[5] = (float)pySize/(float)newTextureSize[1] - offsetY - yMaxOffset;
tcoords[6] = offsetX + xMaxOffset;
tcoords[7] = (float)pySize/(float)newTextureSize[1] - offsetY - yMaxOffset;
if ( imageScalarType == VTK_UNSIGNED_CHAR )
{
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA8,
newTextureSize[0], newTextureSize[1],
0, GL_RGBA, GL_UNSIGNED_BYTE, newTextureChar );
}
else
{
glTexImage2D( GL_TEXTURE_2D, 0, GL_RGBA8,
newTextureSize[0], newTextureSize[1],
0, GL_RGBA, GL_UNSIGNED_SHORT, newTextureShort );
}
// Render the polygon
glBegin( GL_POLYGON );
for ( i = 0; i < 4; i++ )
{
glTexCoord2fv( tcoords+i*2 );
glVertex3fv( newVerts+i*3 );
}
glEnd();
}
}
// Delete the memory we created
delete [] newTextureChar;
delete [] newTextureShort;
}
glFlush();
glDeleteTextures(1, &tempIndex);
// Restore state
glPopAttrib();
return;
}
#else
if ( imageScalarType == VTK_UNSIGNED_CHAR )
{
glTexImage2D( GL_TEXTURE_2D, 0, 4,
imageMemorySize[0], imageMemorySize[1],
0, GL_RGBA, GL_UNSIGNED_BYTE,
static_cast<unsigned char *>(image) );
}
else
{
glTexImage2D( GL_TEXTURE_2D, 0, 4,
imageMemorySize[0], imageMemorySize[1],
0, GL_RGBA, GL_UNSIGNED_SHORT,
static_cast<unsigned short *>(image) );
}
#endif
offsetX = .5 / static_cast<float>(imageMemorySize[0]);
offsetY = .5 / static_cast<float>(imageMemorySize[1]);
tcoords[0] = 0.0 + offsetX;
tcoords[1] = 0.0 + offsetY;
tcoords[2] =
(float)imageInUseSize[0]/(float)imageMemorySize[0] - offsetX;
tcoords[3] = offsetY;
tcoords[4] =
(float)imageInUseSize[0]/(float)imageMemorySize[0] - offsetX;
tcoords[5] =
(float)imageInUseSize[1]/(float)imageMemorySize[1] - offsetY;
tcoords[6] = offsetX;
tcoords[7] =
(float)imageInUseSize[1]/(float)imageMemorySize[1] - offsetY;
// Render the polygon
glBegin( GL_POLYGON );
for ( i = 0; i < 4; i++ )
{
glTexCoord2fv( tcoords+i*2 );
glVertex3fv( verts+i*3 );
}
glEnd();
#ifdef GL_VERSION_1_1
glFlush();
glDeleteTextures(1, &tempIndex);
#endif
// Restore state
glPopAttrib();
}
void vtkOpenGLRayCastImageDisplayHelper::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
}
|