1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
|
/*****************************************************************************
*
* Copyright (c) 2000 - 2010, Lawrence Livermore National Security, LLC
* Produced at the Lawrence Livermore National Laboratory
* LLNL-CODE-400124
* All rights reserved.
*
* This file is part of VisIt. For details, see https://visit.llnl.gov/. The
* full copyright notice is contained in the file COPYRIGHT located at the root
* of the VisIt distribution or at http://www.llnl.gov/visit/copyright.html.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the disclaimer below.
* - Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the disclaimer (as noted below) in the
* documentation and/or other materials provided with the distribution.
* - Neither the name of the LLNS/LLNL nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL LAWRENCE LIVERMORE NATIONAL SECURITY,
* LLC, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
*****************************************************************************/
// ************************************************************************* //
// avtCCSMReader.C //
// ************************************************************************* //
#include <avtCCSMReader.h>
#include <string>
#include <vtkCellArray.h>
#include <vtkRectilinearGrid.h>
#include <vtkStructuredGrid.h>
#include <vtkUnstructuredGrid.h>
#include <vtkPolyData.h>
#include <vtkPoints.h>
#include <vtkUnsignedCharArray.h>
#include <vtkShortArray.h>
#include <vtkIntArray.h>
#include <vtkLongArray.h>
#include <vtkFloatArray.h>
#include <vtkDoubleArray.h>
#include "vtk_netcdf.h"
#include <snprintf.h>
#include <avtDatabaseMetaData.h>
#include <DebugStream.h>
#include <InvalidVariableException.h>
#include <NETCDFFileObject.h>
// ****************************************************************************
// Method: avtCCSM constructor
//
// Programmer: Brad Whitlock
// Creation: Wed Jul 11 11:28:20 PDT 2007
//
// ****************************************************************************
avtCCSMReader::avtCCSMReader(const char *filename, NETCDFFileObject *f) :
avtNETCDFReaderBase(filename, f)
{
initialized = false;
dimSizes = 0;
}
avtCCSMReader::avtCCSMReader(const char *filename) :
avtNETCDFReaderBase(filename)
{
initialized = false;
dimSizes = 0;
}
// ****************************************************************************
// Method: avtCCSMReader::~avtCCSMReader
//
// Purpose:
// Destructor for the avtCCSMReader class.
//
// Programmer: Brad Whitlock
// Creation: Fri Oct 5 12:17:36 PDT 2007
//
// Modifications:
//
// Kathleen Bonnell, Tue Nov 3 11:58:06 PST 2009
// Don't delete fileObject here, base class does it.
//
// ****************************************************************************
avtCCSMReader::~avtCCSMReader()
{
FreeUpResources();
delete [] dimSizes;
}
// ****************************************************************************
// Method: avtCCSMReader::PopulateDatabaseMetaData
//
// Purpose:
// This database meta-data object is like a table of contents for the
// file. By populating it, you are telling the rest of VisIt what
// information it can request from you.
//
// Programmer: Brad Whitlock
// Creation: Wed Jul 11 11:28:20 PDT 2007
//
// Modifications:
// Brad Whitlock, Thu Oct 29 11:04:18 PDT 2009
// I made it support both time-varying and static variables.
//
// ****************************************************************************
void
avtCCSMReader::PopulateDatabaseMetaData(int timeState, avtDatabaseMetaData *md)
{
const char *mName = "avtCCSMReader::PopulateDatabaseMetaData: ";
debug4 << mName << endl;
if(DebugStream::Level4())
fileObject->PrintFileContents(DebugStream::Stream4());
int status, nDims, nVars, nGlobalAtts, unlimitedDimension;
status = nc_inq(fileObject->GetFileHandle(), &nDims, &nVars, &nGlobalAtts,
&unlimitedDimension);
if(status != NC_NOERR)
{
fileObject->HandleError(status);
return;
}
// Get the size of all of the dimensions in the file.
dimSizes = new size_t[nDims];
int i;
for(i = 0; i < nDims; ++i)
{
char dimName[NC_MAX_NAME+1];
size_t sz;
if((status = nc_inq_dim(fileObject->GetFileHandle(), i, dimName,
&sz)) == NC_NOERR)
{
dimSizes[i] = sz;
}
else
{
dimSizes[i] = 1;
fileObject->HandleError(status);
}
}
// Get the time dimension.
int timedim = -1, time_nts = 0;
std::string timedimname;
GetTimeDimension(fileObject, timedim, time_nts, timedimname);
// Iterate over the variables and create a list of meshes names and add
// the variable to the metadata.
meshNameToDimensions.clear();
for(i = 0; i < nVars; ++i)
{
char varname[NC_MAX_NAME+1];
nc_type vartype;
int varndims;
int vardims[NC_MAX_VAR_DIMS];
int varnatts;
if((status = nc_inq_var(fileObject->GetFileHandle(), i, varname,
&vartype, &varndims,
vardims, &varnatts)) == NC_NOERR)
{
// Count the number of variable dimensions that are greater
// than 1.
if (varndims == 0)
continue;
int nSpatialDimsGt1 = 0;
int maxDim = dimSizes[vardims[0]];
bool hasTimeDimension = false;
for(int dim = 0; dim < varndims; ++dim)
{
int d = dimSizes[vardims[dim]];
if(vardims[dim] != timedim)
{
if(d > 1)
++nSpatialDimsGt1;
}
if(d > maxDim)
maxDim = d;
if(vardims[dim] == timedim)
hasTimeDimension = true;
}
int requiredDims = 2;
if(hasTimeDimension)
requiredDims = 3;
if(nSpatialDimsGt1 < 2 || nSpatialDimsGt1 > 3)
{
debug4 << mName << "Rejecting " << varname
<< " because it can't yield 2D or 3D data over time." << endl;
continue;
}
#define TIME_DIMENSION -1
char tmp[100];
std::string meshName("mesh");
intVector meshDims, vDims;
int elems = 1;
debug4 << mName << "vardims=";
for(int dim = varndims-1; dim >= 0; dim--)
{
debug4 << vardims[dim] << ", ";
int d;
if(vardims[dim] != timedim)
{
vDims.push_back(vardims[dim]);
d = dimSizes[vardims[dim]];
elems *= d;
}
else
d = TIME_DIMENSION;
meshDims.push_back(d);
}
debug4 << endl;
// Remove all of the trailing 1's in the meshDims array.
while(meshDims.size() > 0 &&
meshDims[meshDims.size()-1] == 1)
{
meshDims.pop_back();
vDims.pop_back();
}
// Make sure it's not 1 or 0 in some of its dimensions
if(meshDims.size() >= 2 && elems != maxDim && elems > 0)
{
// Come up with the mesh name that we'll use for this
// variable. Note that we don't consider the time dimension
// so time-varying and non-time-varying variables can share
// the same dimension if possible.
int nSpatialDims = 0;
for(int j = 0; j < meshDims.size(); ++j)
{
if(meshDims[j] != TIME_DIMENSION)
{
if(nSpatialDims != 0)
SNPRINTF(tmp, 100, "x%d", meshDims[j]);
else
SNPRINTF(tmp, 100, "%d", meshDims[j]);
++nSpatialDims;
meshName += tmp;
}
}
// Print the meshDimensions.
debug4 << mName << "meshName=" << meshName << ", dims[x,y[,z][,t]]=";
for(int j = 0; j < meshDims.size(); ++j)
debug4 << meshDims[j] << ",";
debug4 << endl;
std::string globalMesh = std::string("global/") + meshName;
// Add the name of the mesh to the list of meshes.
if(meshNameToDimensions.find(meshName) == meshNameToDimensions.end())
{
// Filter out time from the dimensions so time varying and static
// variables can share the same mesh.
intVector meshDimsWithoutTime;
for(int dim = 0; dim < meshDims.size(); ++dim)
if(meshDims[dim] != TIME_DIMENSION)
meshDimsWithoutTime.push_back(meshDims[dim]);
meshNameToDimensions[meshName] = meshDimsWithoutTime;
if(md != 0)
{
avtMeshMetaData *mmd = new avtMeshMetaData(meshName,
1, 1, 1, 0, nSpatialDims, nSpatialDims,
AVT_RECTILINEAR_MESH);
mmd->validVariable = nSpatialDims <= 3;
// Try and read the mesh units
const char *latvars[] = {"lat", "latitude", "LATIXY", "latixy"};
const char *lonvars[] = {"lon", "longitude", "LONGXY", "longxy"};
for(int v = 0; v < 4; ++v)
if(fileObject->ReadStringAttribute(latvars[v], "units", mmd->yUnits))
break;
for(int v = 0; v < 4; ++v)
if(fileObject->ReadStringAttribute(lonvars[v], "units", mmd->xUnits))
break;
// Provide the dimension names as the axis labels.
char dimName[NC_MAX_NAME+1];
size_t sz;
if((status = nc_inq_dim(fileObject->GetFileHandle(), vDims[0], dimName,
&sz)) == NC_NOERR)
{
mmd->xLabel = dimName;
}
if((status = nc_inq_dim(fileObject->GetFileHandle(), vDims[1], dimName,
&sz)) == NC_NOERR)
{
mmd->yLabel = dimName;
}
if(nSpatialDims == 3)
{
if((status = nc_inq_dim(fileObject->GetFileHandle(), vDims[2], dimName,
&sz)) == NC_NOERR)
{
mmd->zLabel = dimName;
}
}
md->Add(mmd);
}
// Create a global mesh too.
meshNameToDimensions[globalMesh] = meshDimsWithoutTime;
if(md != 0)
{
int td = nSpatialDims;
int sd = (nSpatialDims < 3) ? (nSpatialDims+1) : 3;
avtMeshMetaData *mmd = new avtMeshMetaData(globalMesh,
1, 1, 1, 0, sd, td,
AVT_UNSTRUCTURED_MESH);
mmd->validVariable = nSpatialDims <= 3;
md->Add(mmd);
}
}
// Try and get the variable units.
if(md != 0)
{
avtScalarMetaData *smd = new avtScalarMetaData(varname, meshName,
AVT_NODECENT);
smd->hasUnits = fileObject->ReadStringAttribute(
varname, "units", smd->units);
smd->validVariable = nSpatialDims <= 3;
md->Add(smd);
// So we can keep track of the var's size
varToDimensions[varname] = meshDims;
debug4 << "Variable " << varname << " on mesh " << meshName << " with size: {";
for(int j = 0; j < meshDims.size(); ++j)
debug4 << meshDims[j] << ", ";
debug4 << "}" << endl;
// Add a global variable too.
std::string globalVar = std::string("global/") + varname;
smd = new avtScalarMetaData(globalVar,
globalMesh, AVT_ZONECENT);
smd->hasUnits = fileObject->ReadStringAttribute(
varname, "units", smd->units);
smd->validVariable = nSpatialDims <= 3;
md->Add(smd);
varToDimensions[globalVar] = meshDims;
}
}
} // if nc_inc_var
} // for nVars
initialized = true;
}
// ****************************************************************************
// Method: CreateUCDSphere
//
// Purpose:
// Creates a UCD sphere with the given x,y,z sizes.
//
// Arguments:
//
// Returns:
//
// Note:
//
// Programmer: Brad Whitlock
// Creation: Fri Oct 5 12:19:33 PDT 2007
//
// Modifications:
//
// ****************************************************************************
static vtkUnstructuredGrid *
CreateUCDSphere(int X_RES, int Y_RES, int Z_RES)
{
const float earth_radius = 6378.f; // ~ Earth
const float atmosphere_thickness = 1000.f;
const float pole_factor = 0.996;
if(Z_RES == 0)
Z_RES = 1;
int NSHELLS = Z_RES + 1;
int npts = (X_RES * (Y_RES-1) + 2) * NSHELLS;
int ncells = X_RES * Y_RES * Z_RES;
vtkPoints *points = vtkPoints::New();
points->SetNumberOfPoints(npts);
float *fptr = (float *)points->GetVoidPointer(0);
vtkUnstructuredGrid *ugrid = vtkUnstructuredGrid::New();
ugrid->SetPoints(points);
ugrid->Allocate(ncells);
debug4 << "X_RES=" << X_RES << endl;
debug4 << "Y_RES=" << Y_RES << endl;
debug4 << "Z_RES=" << Z_RES << endl;
debug4 << "npts=" << npts << endl;
debug4 << "ncells=" << ncells << endl;
const float rmin = earth_radius;
const float rmax = rmin + atmosphere_thickness;
int nnodes_per_shell = 0;
for(int shell = 0; shell < NSHELLS; ++shell)
{
float ts = float(shell) / float(NSHELLS-1);
float radius = (1.-ts)*rmin + ts*rmax;
for(int ip = 0; ip < Y_RES+1; ++ip)
{
if(ip == 0)
{
*fptr++ = 0.;
*fptr++ = -radius * pole_factor;
*fptr++ = 0.;
if(shell==0)
++nnodes_per_shell;
}
else if(ip == Y_RES)
{
*fptr++ = 0.;
*fptr++ = radius * pole_factor;
*fptr++ = 0.;
if(shell==0)
++nnodes_per_shell;
}
else
{
float poleAngle = float(ip) / float(Y_RES) * M_PI;
float sign = (poleAngle > M_PI_2) ? -1. : 1;
float y = radius * cos(poleAngle) * -1;
float yrad = radius * sin(poleAngle);
for(int ri = 0; ri < X_RES; ++ri)
{
float angle = float(ri) / float(X_RES) * -2. * M_PI;
float x = yrad * cos(angle);
float z = yrad * sin(angle);
*fptr++ = x;
*fptr++ = y * pole_factor;
*fptr++ = z;
if(shell==0)
++nnodes_per_shell;
}
}
}
}
vtkIdType verts[8];
int i;
for(int shell = 0; shell < Z_RES; ++shell)
{
int shell_offset = nnodes_per_shell * shell;
int shell_offset2 = nnodes_per_shell * (shell+1);
for(i = 0; i < X_RES; ++i)
{
if(i < X_RES-1)
{
verts[0] = 0 + shell_offset;
verts[1] = i+2 + shell_offset;
verts[2] = i+1 + shell_offset;
verts[3] = 0 + shell_offset2;
verts[4] = i+2 + shell_offset2;
verts[5] = i+1 + shell_offset2;
}
else
{
verts[0] = 0+ shell_offset;
verts[1] = 1+ shell_offset;
verts[2] = i+1+ shell_offset;
verts[3] = 0 + shell_offset2;
verts[4] = 1 + shell_offset2;
verts[5] = i+1 + shell_offset2;
}
if(Z_RES > 1)
ugrid->InsertNextCell(VTK_WEDGE, 6, verts);
else
ugrid->InsertNextCell(VTK_TRIANGLE, 3, verts);
}
}
int row, nextrow;
for(int shell = 0; shell < Z_RES; ++shell)
{
row = 1;
nextrow = X_RES + 1;
int shell_offset = nnodes_per_shell * shell;
int shell_offset2 = nnodes_per_shell * (shell+1);
for(int j = 0; j < Y_RES - 2; ++j)
{
for(i = 0; i < X_RES; ++i)
{
if(i < X_RES-1)
{
verts[0] = row + i + shell_offset;
verts[1] = row + i + 1 + shell_offset;
verts[2] = nextrow + i + 1 + shell_offset;
verts[3] = nextrow + i + shell_offset;
verts[4] = row + i + shell_offset2;
verts[5] = row + i + 1 + shell_offset2;
verts[6] = nextrow + i + 1 + shell_offset2;
verts[7] = nextrow + i + shell_offset2;
}
else
{
verts[0] = row + i + shell_offset;
verts[1] = row + shell_offset;
verts[2] = nextrow + shell_offset;
verts[3] = nextrow + i + shell_offset;
verts[4] = row + i + shell_offset2;
verts[5] = row + shell_offset2;
verts[6] = nextrow + shell_offset2;
verts[7] = nextrow + i + shell_offset2;
}
if(Z_RES > 1)
ugrid->InsertNextCell(VTK_HEXAHEDRON, 8, verts);
else
ugrid->InsertNextCell(VTK_QUAD, 4, verts);
}
row += X_RES;
nextrow += X_RES;
}
}
int last = X_RES * (Y_RES-1) + 1;
for(int shell = 0; shell < Z_RES; ++shell)
{
int shell_offset = nnodes_per_shell * shell;
int shell_offset2 = nnodes_per_shell * (shell+1);
for(i = 0; i < X_RES; ++i)
{
if(i < X_RES-1)
{
verts[0] = row + i + shell_offset;
verts[1] = row + i + 1 + shell_offset;
verts[2] = last + shell_offset;
verts[3] = row + i + shell_offset2;
verts[4] = row + i + 1 + shell_offset2;
verts[5] = last + shell_offset2;
}
else
{
verts[0] = row + i + shell_offset;
verts[1] = row + shell_offset;
verts[2] = last + shell_offset;
verts[3] = row + i + shell_offset2;
verts[4] = row + shell_offset2;
verts[5] = last + shell_offset2;
}
if(Z_RES > 1)
ugrid->InsertNextCell(VTK_WEDGE, 6, verts);
else
ugrid->InsertNextCell(VTK_TRIANGLE, 3, verts);
}
}
return ugrid;
}
// ****************************************************************************
// Method: avtCCSMReader::GetMesh
//
// Purpose:
// Gets the mesh associated with this file. The mesh is returned as a
// derived type of vtkDataSet (ie vtkRectilinearGrid, vtkStructuredGrid,
// vtkUnstructuredGrid, etc).
//
// Arguments:
// timestate The index of the timestate. If GetNTimesteps returned
// 'N' time steps, this is guaranteed to be between 0 and N-1.
// meshname The name of the mesh of interest. This can be ignored if
// there is only one mesh.
//
// Programmer: Brad Whitlock
// Creation: Wed Jul 11 11:28:20 PDT 2007
//
// Modifications:
// Brad Whitlock, Thu Oct 29 11:04:53 PDT 2009
// I added support for curvilinear grids.
//
// ****************************************************************************
vtkDataSet *
avtCCSMReader::GetMesh(int timestate, const char *var)
{
const char *mName = "avtCCSMReader::GetMesh: ";
debug4 << mName << "var=" << var << endl;
vtkDataSet *retval = 0;
// Populate the mesh names if we've not done so yet.
if(!initialized)
PopulateDatabaseMetaData(-1, 0);
StringIntVectorMap::const_iterator mesh = meshNameToDimensions.find(var);
if(mesh != meshNameToDimensions.end())
{
// Return the dimensions that we should care about.
int dimCounts[3] = {1,1,1};
int nValidDims = 0;
int nnodes = 1;
debug4 << mName << "meshDims={";
for(int i = 0; i < mesh->second.size(); ++i)
{
debug4 << mesh->second[i] << ", ";
if(mesh->second[i] != TIME_DIMENSION)
{
dimCounts[nValidDims++] = mesh->second[i];
nnodes *= mesh->second[i];
}
}
debug4 << endl;
debug4 << mName << "nValidDims=" << nValidDims << ", dims={"
<< dimCounts[0] << ", " << dimCounts[1] << ", " << dimCounts[2]
<< "}" << endl;
if(strncmp(var, "global/", 7) == 0)
{
debug4 << mName << "Creating global mesh" << endl;
retval = CreateUCDSphere(dimCounts[0], dimCounts[1], dimCounts[2]);
}
else
{
// Let's try and read longxy latixy arrays and create a curvilinear mesh.
float *xarray = 0, *yarray = 0;
xarray = ReadArray("LONGXY");
if(xarray == 0)
xarray = ReadArray("longxy");
yarray = ReadArray("LATIXY");
if(yarray == 0)
yarray = ReadArray("latixy");
if(xarray != 0 && yarray != 0)
{
int dims[3] = {1,1,1};
int ndims = nValidDims;
dims[0] = dimCounts[0];
dims[1] = dimCounts[1];
dims[2] = dimCounts[2];
debug4 << mName << "Creating sgrid " << endl;
//
// Create the vtkStructuredGrid and vtkPoints objects.
//
vtkStructuredGrid *sgrid = vtkStructuredGrid::New();
vtkPoints *points = vtkPoints::New();
sgrid->SetPoints(points);
sgrid->SetDimensions(dims);
points->Delete();
points->SetNumberOfPoints(nnodes);
//
// Copy the coordinate values into the vtkPoints object.
//
float *pts = (float *) points->GetVoidPointer(0);
float *xc = xarray;
float *yc = yarray;
if(ndims == 3)
{
for(int k = 0; k < dims[2]; ++k)
{
xc = xarray;
yc = yarray;
for(int j = 0; j < dims[1]; ++j)
{
for(int i = 0; i < dims[0]; ++i)
{
*pts++ = *xc++;
*pts++ = *yc++;
*pts++ = k;
}
}
}
}
else if(ndims == 2)
{
for(int j = 0; j < dims[1]; ++j)
{
for(int i = 0; i < dims[0]; ++i)
{
*pts++ = *xc++;
*pts++ = *yc++;
*pts++ = 0.;
}
}
}
retval = sgrid;
}
else
{
// We didn't get those arrays so create a rectilinear grid.
delete [] xarray;
delete [] yarray;
debug4 << mName << "Creating rgrid " << endl;
int i, j;
vtkRectilinearGrid *rgrid = vtkRectilinearGrid::New();
// Try and read the "lon" and "lat" arrays.
xarray = ReadArray("longitude");
if(xarray == 0)
xarray = ReadArray("lon");
yarray = ReadArray("latitude");
if(yarray == 0)
yarray = ReadArray("lat");
if(xarray == 0 || yarray == 0)
{
EXCEPTION1(InvalidVariableException, var);
}
float *zarray = 0;
if(nValidDims == 3)
{
zarray = new float[dimCounts[2]];
for(int i = 0; i < dimCounts[2]; ++i)
zarray[i] = i;
}
//
// Populate the coordinates. Put in 3D points with z=0 if
// the mesh is 2D.
//
int dims[3];
vtkFloatArray *coords[3];
float *coord_vals[3] = {xarray, yarray, zarray};
for (i = 0 ; i < 3 ; i++)
{
// Default number of components for an array is 1.
coords[i] = vtkFloatArray::New();
if (i < nValidDims)
{
dims[i] = dimCounts[i];
coords[i]->SetNumberOfTuples(dims[i]);
if(coord_vals[i] != 0)
{
for (j = 0 ; j < dims[i] ; j++)
{
double d = coord_vals[i][j];
coords[i]->SetComponent(j, 0, d);
}
}
else
{
for (j = 0 ; j < dims[i] ; j++)
coords[i]->SetComponent(j, 0, j);
}
}
else
{
dims[i] = 1;
coords[i]->SetNumberOfTuples(1);
coords[i]->SetComponent(0, 0, 0.);
}
}
rgrid->SetDimensions(dims);
rgrid->SetXCoordinates(coords[0]);
coords[0]->Delete();
rgrid->SetYCoordinates(coords[1]);
coords[1]->Delete();
rgrid->SetZCoordinates(coords[2]);
coords[2]->Delete();
retval = rgrid;
}
delete [] xarray;
delete [] yarray;
}
}
else
{
EXCEPTION1(InvalidVariableException, var);
}
return retval;
}
// ****************************************************************************
// Method: avtCCSMReader::GetVar
//
// Purpose:
// Gets a scalar variable associated with this file. Although VTK has
// support for many different types, the best bet is vtkFloatArray, since
// that is supported everywhere through VisIt.
//
// Arguments:
// timestate The index of the timestate. If GetNTimesteps returned
// 'N' time steps, this is guaranteed to be between 0 and N-1.
// varname The name of the variable requested.
//
// Programmer: Brad Whitlock
// Creation: Wed Jul 11 11:28:20 PDT 2007
//
// Modifications:
// Brad Whitlock, Thu Oct 29 11:00:44 PDT 2009
// I made it use varToDimensions to get the variable size.
//
// ****************************************************************************
#define READVAR(VTKTYPE) \
{\
VTKTYPE *arr = VTKTYPE::New();\
arr->SetNumberOfComponents(1);\
arr->SetNumberOfTuples(nElems);\
debug4 << "Allocated a " << \
#VTKTYPE \
<< " of " << nElems << " elements" << endl; \
if(fileObject->ReadVariableInto(realvar, t, dimStarts, dimCounts, \
arr->GetVoidPointer(0)))\
{\
debug4 << mName << "Read " << nElems << " values" << endl; \
retval = arr;\
} \
else\
{\
debug4 << mName << "Read failed!" << endl; \
arr->Delete();\
}\
}
vtkDataArray *
avtCCSMReader::GetVar(int timestate, const char *var)
{
const char *mName = "avtCCSMReader::GetVar: ";
debug4 << mName << "var=" << var << endl;
vtkDataArray *retval = 0;
TypeEnum t = NO_TYPE;
int ndims = 0;
int *dims = 0;
// Populate the mesh names if we've not done so yet.
if(!initialized)
PopulateDatabaseMetaData(-1, 0);
// Skip past "global/" if it is prepended.
const char *realvar = strstr(var, "/");
if(realvar == 0)
realvar = var;
else
realvar++;
debug4 << mName << "realvar = " << realvar << endl;
StringIntVectorMap::const_iterator minfo = varToDimensions.find(var);
if(minfo == varToDimensions.end())
{
EXCEPTION1(InvalidVariableException, var);
}
debug4 << mName << "Found variable dimensions." << endl;
// Inq the variable to get its type.
if(!fileObject->InqVariable(realvar, &t, &ndims, &dims))
return 0;
// Now, we have the mesh info, which describes the shape of the mesh
// and from which we can create the size of the slice.
int dimStarts[4] = {0,0,0,0};
int dimCounts[4] = {1,1,1,1};
int nElems = 1;
debug4 << mName << "meshDims={";
for(int i = 0; i < minfo->second.size(); ++i)
debug4 << minfo->second[i] << ", ";
debug4 << "}" << endl;
int index = minfo->second.size()-1;
for(int i = 0; i < minfo->second.size(); ++i, --index)
{
if(minfo->second[i] == TIME_DIMENSION)
{
dimStarts[index] = timestate;
dimCounts[index] = 1;
}
else
{
dimStarts[index] = 0;
dimCounts[index] = minfo->second[i];
nElems *= dimCounts[index];
}
}
debug4 << mName << "dimStarts = {"
<< dimStarts[0] << ", "
<< dimStarts[1] << ", "
<< dimStarts[2] << ", "
<< dimStarts[3] << "}\n";
debug4 << mName << "dimCounts = {"
<< dimCounts[0] << ", "
<< dimCounts[1] << ", "
<< dimCounts[2] << ", "
<< dimCounts[3] << "}\n";
if(t == CHARARRAY_TYPE || t == UCHARARRAY_TYPE)
READVAR(vtkUnsignedCharArray)
else if(t == SHORTARRAY_TYPE)
READVAR(vtkShortArray)
else if(t == INTEGERARRAY_TYPE)
READVAR(vtkIntArray)
else if(t == LONGARRAY_TYPE)
READVAR(vtkLongArray)
else if(t == FLOATARRAY_TYPE)
READVAR(vtkFloatArray)
else if(t == DOUBLEARRAY_TYPE)
READVAR(vtkDoubleArray)
else
{
debug4 << mName << "Unsupported type!" << endl;
}
return retval;
}
|