1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
|
/*!
\file paradis.C
a new run at libparadis.C from the ground up
Need to do this because the previous design was intentionally entwined with povray and HTS operations for efficiency, and assumed the whole dataset would be read at once.
*/
#include "paradis.h"
#include <cstring>
#include <fstream>
#include <string>
#include <iostream>
#include "RC_c_lib/debugutil.h"
#include "RC_cpp_lib/stringutil.h"
#include "RC_cpp_lib/timer.h"
#include <algorithm>
#ifndef WIN32
# include <dirent.h>
#else
# include <direct.h>
#endif
#include <sys/stat.h>
#include <errno.h>
using namespace RC_Math;
using namespace std;
namespace paraDIS {
//===========================================================================
#ifdef DEBUG
int32_t ArmSegment::mNextID = 0;
int32_t Arm::mNextID = 0;
rclib::Point<float> FullNode::mBoundsMin, FullNode::mBoundsMax, FullNode::mBoundsSize;
#endif
double gSegLen = 0 ;
uint32_t gNumClassified = 0, gNumWrapped = 0, gNumArmSegmentsMeasured=0;
double Arm::mThreshold = -1;
//===========================================================================
std::string Node::Stringify(void) const {
std::string s(std::string("(Node): ") +
mID.Stringify() + string("\n"));
s += string("(node): In bounds: ") + (mInBounds?"true":"false");
return s;
}
//===========================================================================
ArmSegment *FullNode::GetOtherNeighbor (const ArmSegment* n) {
if (mNeighborSegments.size() > 2) {
throw string("GetOtherNeighbor called, but mNeighborSegments.size() is greater than 2: ")+Stringify();
}
if (*mNeighborSegments[0] == *n) {
if (mNeighborSegments.size() == 1) {
return NULL;
}
return mNeighborSegments[1];
}
// else mNeighborSegments[0] != n
if (mNeighborSegments.size() == 1 || *mNeighborSegments[1] != *n) {
throw string("GetOtherNeighbor: given segment is not a neighbor of this segment. This: ")+this->Stringify()+", given: "+n->Stringify();
}
return mNeighborSegments[0];
}
//===========================================================================
void FullNode::ConfirmNeighbors(void) {
int segnum = mNeighborSegments.size();
while (segnum--) {
mNeighborSegments[segnum]->ConfirmEndpoint(this);
}
return;
}
//===========================================================================
std::string FullNode::Stringify(bool showneighbors) const {
std::string s(string("(FullNode address )") + pointerToString(this) +
#ifdef DEBUG
" index " + intToString(mNodeIndex) +
#endif
" type " + (intToString(mNodeType) + string("\n")) +
Node::Stringify() + string("\n") + "Location: (");
uint32_t i=0; while (i<3) {
s+= doubleToString(mLocation[i]);
if (i<2) s+= ", ";
++i;
}
s += ")\n";
if (showneighbors) {
s+= "Neighbors:\n";
i=0; while (i < mNeighborSegments.size()) {
s += "neighbor " + intToString(i) + ": ";
if (mNeighborSegments[i]) {
s+= mNeighborSegments[i]->Stringify();
} else {
s += "(NULL)\n";
}
++i;
}
}
return s;
}
//===========================================================================
void FullNode::SetNodeType(int8_t itype) {
if (itype != -1) {
/*!
Simply set the type as requested
*/
mNodeType = itype;
} else {
/*!
set my own type according to what I know -- this covers all nodes except butterfly ends.
*/
mNodeType = mNeighborSegments.size(); // true for vast majority of nodes.
if (mNodeType == 4) {//four-armed is forewarned! Oh, I'm funny.
/*!
check for a monster or special monster
*/
int num_111 = 0, num_100 = 0;
int neighbor = 4;
/*!
btypes: used to check for duplicates -- if any two arms are the same type, it's not a monster. There are only 8 types, but they are 1-based, so allocate 9 slots.
*/
bool btypes[9] = {false};
while (neighbor--) {
const ArmSegment *theSegment =
dynamic_cast<const ArmSegment *>(mNeighborSegments[neighbor]);
int8_t btype = theSegment->GetBurgersType();
if (btypes[btype] || btype == BURGERS_UNKNOWN) {
return; //not a monster, we're done
}
btypes[btype] = true;
if (btype < 4) num_100++;
else num_111++;
}
/*!
We have four uniquely valued arms. Are they of the right mix?
*/
if (num_111 == 4) {
mNodeType = -4;
} else if (num_111 == 2 && num_100 == 2 ) {
mNodeType = -44;
}
}// end if four-armed
}
return;
}/* end SetNodeType */
//===========================================================================
void ArmSegment::ComputeBurgersType(float burg[3]) {
mBurgersType = BURGERS_UNKNOWN;
int valarray[3] =
{Category(burg[0]), Category(burg[1]), Category(burg[2])};
if (valarray[0] == 1 && valarray[1] == 0 && valarray[2] == 0)
mBurgersType = BURGERS_100;
else if (valarray[0] == 0 && valarray[1] == 1 && valarray[2] == 0)
mBurgersType = BURGERS_010;
else if (valarray[0] == 0 && valarray[1] == 0 && valarray[2] == 1)
mBurgersType = BURGERS_001;
else if ((valarray[0] == 2 && valarray[1] == 2 && valarray[2] == 2) ||
(valarray[0] == 3 && valarray[1] == 3 && valarray[2] == 3))
mBurgersType = BURGERS_PPP;
else if ((valarray[0] == 2 && valarray[1] == 2 && valarray[2] == 3) ||
(valarray[0] == 3 && valarray[1] == 3 && valarray[2] == 2))
mBurgersType = BURGERS_PPM;
else if ((valarray[0] == 2 && valarray[1] == 3 && valarray[2] == 2) ||
(valarray[0] == 3 && valarray[1] == 2 && valarray[2] == 3))
mBurgersType = BURGERS_PMP;
else if ((valarray[0] == 2 && valarray[1] == 3 && valarray[2] == 3) ||
(valarray[0] == 3 && valarray[1] == 2 && valarray[2] == 2))
mBurgersType = BURGERS_PMM;
else {
mBurgersType = BURGERS_UNKNOWN;
dbprintf(3, "\n\n********************************\n");
dbprintf(3, "Warning: segment has odd value/category: value = %d, burg = (%f, %f, %f), valarray=(%d, %d, %d)\n", mBurgersType, burg[0], burg[1], burg[2], valarray[0], valarray[1], valarray[2]);
dbprintf(3, "\n********************************\n\n");
}
return;
}
//===========================================================================
bool ArmSegment::Wrap(const rclib::Point<float> &dataSize,
ArmSegment *&oNewSegment,
FullNode *&oWrapped0, FullNode *&oWrapped1) {
const float *loc0 = mEndpoints[0]->GetLocation(),
*loc1 = mEndpoints[1]->GetLocation();
float shift_amt[3] = {0};
bool wrap = false;
int i=3; while (i--) {
float dist = fabs(loc0[i] - loc1[i]);
if (dataSize[i]/2.0 < dist) {
wrap = true;
shift_amt[i] = dataSize[i];
}
}
if (!wrap) {
oWrapped0 = NULL; oWrapped1 = NULL; oNewSegment = NULL;
dbprintf(5, "Not wrapped: %s\n", Stringify().c_str());
gSegLen += GetLength();
return false;
}
gNumWrapped++;
oWrapped0 = new FullNode(*mEndpoints[0], true);
oWrapped1 = new FullNode(*mEndpoints[1], true);
oNewSegment = new ArmSegment(*this);
oNewSegment->mWrapped = true;
i = 3; while (i--) {
if (oWrapped0->GetLocation(i) < oWrapped1->GetLocation(i)) {
/*!
Wrap node0 "forward" and wrap node1 "backward" in space
*/
oWrapped0->AddToLocation(i, shift_amt[i]);
oWrapped1->AddToLocation(i, -shift_amt[i]);
} else {
/*!
Wrap node0 "backward" and wrap node1 "forward" in space
*/
oWrapped0->AddToLocation(i, -shift_amt[i]);
oWrapped1->AddToLocation(i, shift_amt[i]);
}
}
oWrapped0->SetInBounds();
oWrapped1->SetInBounds();
mEndpoints[1]->SetInBounds();
mEndpoints[0]->SetInBounds();
/*!
insert the new segment between endpoint 1 and the new node 0
*/
oNewSegment->ReplaceEndpoint(mEndpoints[0], oWrapped0);
oWrapped0->AddNeighbor(oNewSegment);
mEndpoints[1]->ReplaceNeighbor(this,oNewSegment);
/*!
Insert *this between endpoint 0 and the new node 1
*/
oWrapped1->AddNeighbor(this);
this->ReplaceEndpoint(mEndpoints[1], oWrapped1);
//oWrapped0->ConfirmNeighbors();
//oWrapped1->ConfirmNeighbors();
/*!
Now is the time to most easily check if the wrapping has created a useless pair of nodes (both out of bounds)
*/
/*
if (!oWrapped0->InBounds() && !mEndpoints[1]->InBounds()) {
oWrapped0->SetNodeType(USELESS_NODE);
mEndpoints[1]->SetNodeType(USELESS_NODE);
}
if (!oWrapped1->InBounds() && !mEndpoints[0]->InBounds()) {
oWrapped1->SetNodeType(USELESS_NODE);
mEndpoints[0]->SetNodeType(USELESS_NODE);
}
*/
gSegLen += GetLength();
dbprintf(5, "Wrapped: %s\n", Stringify().c_str());
return true;
}
//===========================================================================
bool Arm::HaveFourUniqueType111ExternalArms(void) {
if (mTerminalNodes.size() != 2) return false;
int btypes[9] = {false};
int nodenum = 2;
while (nodenum--) {
FullNode *thisNode = mTerminalNodes[nodenum];
int neighbornum = thisNode->GetNumNeighbors();
if (neighbornum != 3) return false;
while (neighbornum--) {
const ArmSegment *thisSegment = thisNode->GetNeighbor(neighbornum);
/*!
Only check exterior segments (those which don't belong to *this).
*/
if (thisSegment == mTerminalSegments[0] ||
thisSegment == mTerminalSegments[1]) continue;
int btype = thisSegment->GetBurgersType();
if (btype <= 3 || btype == 8 || btypes[btype]) return false;
btypes[btype] = true;
}
}
/*!
At this point, we know that we have four unique type 111 arms
*/
return true;
}/* end HaveFourUniqueType111ExternalArms */
#if LINKED_LOOPS
//===========================================================================
void Arm::CheckForLinkedLoops(void) {
if (mCheckedForLinkedLoop) return;
mCheckedForLinkedLoop = true;
/*!
Iff we have one terminal node with four arms and one neighbor, or two terminal nodes with three arms and num neighbors == 2, then we are part of a linked loop.
Note that it's not true that if you have two terminal nodes with N arms and number of arms on each terminal node == N-1 that it's necessarily a linked loop, although it certainly is an interesting beast.
*/
bool notPartOfLoop = false; //set for early termination
int numTerminalNodeArms = 0; // all terminal nodes must have the same number of arms.
// Count the number of distinct neighboring arms to this one
vector<Arm*> myNeighbors;
vector<FullNode *>::iterator termNode = mTerminalNodes.begin(), endNode = mTerminalNodes.end();
for (; !notPartOfLoop && termNode != endNode; termNode++) {
int neighborNum = (*termNode)->GetNumNeighbors();
if (!numTerminalNodeArms) {
numTerminalNodeArms = neighborNum;
} else if (neighborNum != numTerminalNodeArms) {
notPartOfLoop = true;
break;
}
while (neighborNum --) {
Arm *neighbor = (*termNode)->GetNeighbor(neighborNum)->mParentArm;
bool knownNeighbor = (neighbor == this);
if (!knownNeighbor &&
neighbor->mCheckedForLinkedLoop) {
/*!
Since this neighbor has been checked, we cannot be
part of a linked loop, or we would already be marked as such.
Just a quick reality check to confirm it and we're done.
*/
if (neighbor->mPartOfLinkedLoop) {
dbprintf(0, "Impossible -- neighbor is part of linked loop but we are not!\n");
exit(1);
}
notPartOfLoop = true;
break;
}
int myNeighborNum = myNeighbors.size();
while (!knownNeighbor && myNeighborNum--) {
if (myNeighbors[myNeighborNum] == neighbor) {
// duplicates are ok, and for linked loops, actually expected
knownNeighbor = true;
}
}
if (!knownNeighbor) {
// Aha! We have a new neighbor of us
myNeighbors.push_back(neighbor);
}// found a new neighbor
}// looking at all neighbors of terminal node
} // looking at both terminal nodes
/*!
Are we part of a linked loop? See definition above -- it's tricky.
*/
if (!notPartOfLoop) {
if ((myNeighbors.size() == 2 && mTerminalNodes.size() == 2 && numTerminalNodeArms == 3) ||
(myNeighbors.size() == 1 && mTerminalNodes.size() == 1 && numTerminalNodeArms == 4)) {
mPartOfLinkedLoop = true;
}
}
/*!
If we are not part of a linked loop, none of our neighbors are,
and if we are part of a linked loop, all of our neighbors are.
So mark this arm and all neighbors of both terminal nodes appropriately.
*/
int neighborNum = myNeighbors.size();
while (neighborNum --) {
myNeighbors[neighborNum]->mCheckedForLinkedLoop = true;
myNeighbors[neighborNum]->mPartOfLinkedLoop = mPartOfLinkedLoop;
}
return;
}
#endif // LINKED_LOOPS
//===========================================================================
void Arm::ComputeLength(void) {
mArmLength = 0;
// first figure out how to iterate.
ArmSegment *startSegment = const_cast<ArmSegment*>(mTerminalSegments[0]);
FullNode *startNode = NULL;
if (startSegment->GetEndpoint(0) == mTerminalNodes[0] ||
startSegment->GetEndpoint(1) == mTerminalNodes[0]) {
startNode = mTerminalNodes[0];
} else if (mTerminalNodes.size() == 2 &&
( startSegment->GetEndpoint(0) == mTerminalNodes[1] ||
startSegment->GetEndpoint(1) == mTerminalNodes[1])) {
startNode = mTerminalNodes[1];
} else {
throw string("Cannot find matching terminal node in arm for either segment endpoint");
}
ArmSegment *lastSegment = NULL;
uint32_t numSeen = 0;
if (mTerminalSegments.size() == 1) lastSegment = startSegment;
else lastSegment = const_cast<ArmSegment*>(mTerminalSegments[1]);
// now compute the length of the arm
FullNode *currentNode = startNode;
ArmSegment *currentSegment = startSegment;
while (true) {
dbprintf(5, "Adding length for %s\n", currentSegment->Stringify().c_str());
mArmLength += currentSegment->GetLength(true);
if (currentSegment == lastSegment) {
break;
}
currentNode = currentSegment->GetOtherEndpoint(currentNode);
currentSegment = currentNode->GetOtherNeighbor(currentSegment);
}
return;
}
//===========================================================================
void Arm::Classify(void) {
#if LINKED_LOOPS
CheckForLinkedLoops();
#endif
if (mTerminalNodes.size() == 1) {
mArmType = ARM_LOOP;
} else {
if (mTerminalNodes[0]->IsTypeM() && mTerminalNodes[1]->IsTypeM()) {
mArmType = ARM_MM_111;
} else if (mTerminalNodes[0]->IsTypeM() || mTerminalNodes[1]->IsTypeM()){
mArmType = ARM_MN_111;
} else {
mArmType = ARM_NN_111;
}
// This changes _111 to _100 by definition
int btype = mTerminalSegments[0]->GetBurgersType();
if (btype <= 3) {
mArmType += 3;
}
}
/*!
Now compute the length of the arm to enable "short arm" marking, then mark all segments with their MN type.
*/
// first figure out how to iterate.
ArmSegment *startSegment = const_cast<ArmSegment*>(mTerminalSegments[0]);
FullNode *startNode = NULL;
if (startSegment->GetEndpoint(0) == mTerminalNodes[0] ||
startSegment->GetEndpoint(1) == mTerminalNodes[0]) {
startNode = mTerminalNodes[0];
} else if (mTerminalNodes.size() == 2 &&
( startSegment->GetEndpoint(0) == mTerminalNodes[1] ||
startSegment->GetEndpoint(1) == mTerminalNodes[1])) {
startNode = mTerminalNodes[1];
} else {
throw string("Cannot find matching terminal node in arm for either segment endpoint");
}
ArmSegment *lastSegment = NULL;
uint32_t numSeen = 0;
if (mTerminalSegments.size() == 1) lastSegment = startSegment;
else lastSegment = const_cast<ArmSegment*>(mTerminalSegments[1]);
// now compute the length of the arm
FullNode *currentNode = startNode;
ArmSegment *currentSegment = startSegment;
while (true) {
dbprintf(5, "Adding length for %s\n", currentSegment->Stringify().c_str());
mArmLength += currentSegment->GetLength();
if (currentSegment == lastSegment) {
break;
}
currentNode = currentSegment->GetOtherEndpoint(currentNode);
currentSegment = currentNode->GetOtherNeighbor(currentSegment);
}
/*!
Now set every segment in this arm to the same type
*/
currentNode = startNode;
currentSegment = startSegment;
if (mThreshold > 0 && mArmLength < mThreshold) {
if (mArmType == ARM_NN_111) mArmType = ARM_SHORT_NN_111;
if (mArmType == ARM_NN_100) mArmType = ARM_SHORT_NN_100;
}
while (true) {
dbprintf(5, "Classifying segment %s\n", currentSegment->Stringify().c_str());
currentSegment->SetMNType(mArmType);
gNumClassified++;
numSeen ++;
if (currentSegment == lastSegment) {
break;
}
currentNode = currentSegment->GetOtherEndpoint(currentNode);
currentSegment = currentNode->GetOtherNeighbor(currentSegment);
}
#ifdef DEBUG
if (numSeen != mNumSegments) {
throw string("Error in Arm ")+intToString(mArmID)+": classified "+intToString(numSeen)+" segments, but expected "+ intToString(mNumSegments);
}
#endif
return;
}
//===========================================================================
void Arm::CheckForButterfly(void) {
/*!
There must be two terminal nodes else give up
*/
if (mTerminalNodes.size() != 2 ) return;
/*!
The arm must be type 100, else give up.
*/
if (mTerminalSegments[0]->GetBurgersType() > 3 ||
mTerminalSegments[0]->GetBurgersType() == 0) return;
/*!
One of the nodes must be a type 3 node and the other must be either type 3 or type -4 or type -44. Note that if a node is both a type -3 and type -33, it is considered a type -3 node, which means that here if the node is already type -3, we don't consider it, but if it is type -33, we do.
*/
/*!
first check node 0 against node 1, then node 1 against node 0
*/
int firstNodeNum = 2;
while (firstNodeNum --) {
FullNode *firstNode = mTerminalNodes[firstNodeNum],
*otherNode = mTerminalNodes[1-firstNodeNum];
int firstNodeType = firstNode->GetNodeType(),
otherNodeType =otherNode->GetNodeType();
if (firstNodeType == 3 && otherNodeType == -44) {
/*!
type3node is a "special butterfly"
Note -- we don't check if firstNodeType is -33 -- would be redundant.
We don't check if firstNodeType is -3, because -33 "loses" to -3.
*/
firstNode->SetNodeType(-33);
} else if (firstNodeType == 3 || firstNodeType == -33) {
/*!
Both terminal nodes might be "normal butterflies" (type -3). Need to collect and examine all "non-body" armsegments. If any two are duplicates or are not type 111 arms, then it is not a special butterfly. We are only interested in first 3 types but they are 1-based, so allocate four slots.
*/
if (HaveFourUniqueType111ExternalArms()) {
firstNode->SetNodeType(-3);
otherNode->SetNodeType(-3);
/*!
Since type -3 "outranks" all other node types, we can stop here
*/
return;
}
}
}
return ;
}/* end CheckForButterfly()*/
//===========================================================================
std::string Arm::Stringify(void) const {
std::string s = string("(arm): ") +
#ifdef DEBUG
"number " + intToString(mArmID) +
", numSegments = " +intToString(mNumSegments) +
", length = " +doubleToString(GetLength()) +
#endif
", Type " + intToString(mArmType);
#if LINKED_LOOPS
if (mPartOfLinkedLoop) {
s += ", is part of linked loop.\n";
} else {
s += ", is NOT part of linked loop.\n";
}
#endif
int num = 0, max = mTerminalNodes.size();
while (num < max) {
s+= "Terminal Node " + intToString(num) + string(": ");
if (mTerminalNodes[num]) {
s += mTerminalNodes[num]->Stringify() + string("\n");
} else {
s += "(NULL)\n"; //deleted because it was useless.
}
++num;
}
max = mTerminalSegments.size(); num = 0;
while (num < max) {
s+= "Terminal Segment " + intToString(num) + string(": ");
if (mTerminalSegments[num]) {
s += mTerminalSegments[num]->Stringify() + string("\n");
} else {
s+= "(NULL)\n";
}
++num;
}
return s;
}
//===========================================================================
// see also DebugPrintArms() -- this just tabulates a summary
void DataSet::PrintArmStats(void) {
//if (!dbg_isverbose()) return;
//dbprintf(3, "Beginning PrintArmStats()");
double armLengths[11] = {0}, totalArmLength=0;
uint32_t numArms[11] = {0}; // number of arms of each type
uint32_t totalArms=0;
#if LINKED_LOOPS
double linkedLoopLength = 0;
uint32_t numLinkedLoops = 0;
#endif
//NN types corresponding to burgers values of the NN arms:
const char *armTypes[7] = {
"NN_100",
"NN_010",
"NN_001",
"NN_+++",
"NN_++-",
"NN_+-+",
"NN_-++"
};
double shortLengths[7] = {0}, longLengths[7]={0};
uint32_t numShortArms[7]={0}, numLongArms[7]={0};
vector<Arm>::iterator armpos = mArms.begin(), armend = mArms.end();
while (armpos != armend) {
double length = armpos->GetLength();
int armType = armpos->mArmType;
if (mThreshold >= 0) {
int8_t btype = armpos->GetBurgersType();
if (!btype) {
printf("Error: armpos has no terminal segments!\n");
}
if (armType == ARM_SHORT_NN_111 || armType == ARM_SHORT_NN_100 ) {
numShortArms[btype-1]++;
shortLengths[btype-1] += length;
}
else {
numLongArms[btype-1]++;
longLengths[btype-1] += length;
}
}
armLengths[armType] += length;
totalArmLength += length;
numArms[armType]++;
totalArms++;
#if LINKED_LOOPS
if (armpos->mPartOfLinkedLoop) {
numLinkedLoops ++;
linkedLoopLength += length;
}
#endif
++armpos;
}
const char *armTypeNames[11] =
{ "ARM_UNKNOWN",
"ARM_UNINTERESTING",
"ARM_LOOP",
"ARM_MM_111" ,
"ARM_MN_111",
"ARM_NN_111" ,
"ARM_MM_100",
"ARM_MN_100",
"ARM_NN_100",
"ARM_SHORT_NN_111",
"ARM_SHORT_NN_100"
};
printf("\n");
printf("===========================================\n");
printf("total Number of arms: %d\n", totalArms);
printf("total length of all arms: %.2f\n", totalArmLength);
printf("Number of segments classified in arm: %d\n", gNumClassified);
printf("Number of segments measured in arm: %d\n", gNumArmSegmentsMeasured);
printf("Number of segments wrapped: %d\n", gNumWrapped);
printf("===========================================\n");
int i = 0; for (i=0; i<11; i++) {
printf("%s: number of arms = %d\n", armTypeNames[i], numArms[i]);
printf("%s: total length of arms = %.2f\n", armTypeNames[i], armLengths[i]);
printf("----------------------\n");
}
#if LINKED_LOOPS
printf("LINKED LOOPS: total number of arms = %d\n", numLinkedLoops);
printf("LINKED LOOPS: total length of arms = %.2f\n", linkedLoopLength);
printf("----------------------\n");
#endif
// write a row of arm lengths to make analysis via spreadsheet easier
printf("Key: UNKNOWN\tUNINTRSTNG\tLOOP\tMM_111\tMN_111\tNN_111\tMM_100\tMN_100\tNN_100\tSHORT_NN_111\tSHORT_NN_100\n");
int n = 0;
while (n<11) {
printf("%.2f\t", armLengths[n]);
++n;
}
if (mThreshold >= 0.0) {
printf("\n\n----------------------\n");
printf("THRESHOLD data. Threshold = %.2f\n", mThreshold);
int n = 0;
for (n=0; n<7; n++) {
printf("----------------------\n");
printf("Total number of %s arms: %d\n", armTypes[n], numShortArms[n] + numLongArms[n]);
printf("Total length of %s arms: %.2f\n", armTypes[n], shortLengths[n] + longLengths[n]);
printf("Number of %s arms SHORTER than threshold = %d\n", armTypes[n], numShortArms[n]);
printf("Total length of %s arms longer than threshold = %.2f\n", armTypes[n], shortLengths[n]);
printf("Number of %s arms LONGER than threshold = %d\n", armTypes[n], numLongArms[n]);
printf("Total length of %s arms longer than threshold = %.2f\n", armTypes[n], longLengths[n]);
printf("\n");
}
}
// write a row of arm lengths to make analysis via spreadsheet easier
printf("----------------------\n");
printf("Key: NN_100\tNN_010\tNN_001\tNN_+++\tNN_++-\tNN_+-+\tNN_-++\n");
printf("SHORT ARM LENGTHS:\n");
n=0; while (n<7) {
printf("%.2f\t", shortLengths[n]);
++n;
}
printf("\nLONG ARM LENGTHS:\n");
n = 0; while (n<7) {
printf("%.2f\t", longLengths[n]);
++n;
}
printf("\n");
printf("----------------------\n\n\n");
#ifdef DEBUG_SEGMENTS
// check against segment lengths:
uint32_t numSegments[11] = {0}, totalSegments=0, culledSegments=0; // number of arms of each type
double segmentLengths[11] = {0}, totalSegmentLength=0, culledLength=0;
std::vector<ArmSegment *>::iterator segpos = mFinalArmSegments.begin(), segend = mFinalArmSegments.end();
while (segpos != segend) {
ArmSegment *seg = *segpos;
double length = seg->GetLength();
// Cull out half the wrapped segments in such a way that for each culled, there is an identical one remaining:
if (!seg->Cullable()) {
segmentLengths[seg->GetMNType()] += length;
totalSegmentLength += length;
numSegments[seg->GetMNType()]++;
totalSegments++;
} else {
culledSegments++;
culledLength +=length;
}
++segpos;
}
printf("===========================================\n");
printf("REALITY CHECK: total length of all segments, skipping wrapped segments\n");
printf("total Number of segments: %d\n", totalSegments);
printf("total length of all segments: %.2f\n", totalSegmentLength);
printf("===========================================\n");
for (i=0; i<11; i++) {
printf("%s: number of segs = %d\n", armTypeNames[i], numArms[i]);
printf("%s: total length of segments = %.2f\n", armTypeNames[i], armLengths[i]);
printf("----------------------\n");
}
printf("CULLED segments = %d\n", culledSegments);
printf("CULLED length = %.2f\n", culledLength);
printf("Wrapped lengths: %.2f\n", gSegLen);
printf("----------------------\n\n\n");
#endif
return;
}
//===========================================================================
void DataSet::TestRestrictSubspace(void) {
rclib::Point<float> datamin , datamax;
GetBounds(datamin, datamax);
datamax /= 2.0;
SetSubspace(datamin, datamax);
return;
}
//===========================================================================
void DataSet::ReadBounds(void) {
dbprintf(2,"Beginning ReadBounds\n");
try {
ifstream dumpfile(mDataFilename.c_str());
if (!dumpfile.good()){
throw string("Cannot open dumpfile ") + mDataFilename;
}
else {
dbprintf(2, "Parsing file %s\n", mDataFilename.c_str());
}
mFileVersion = 42;
dbprintf(2, "Looking for file version...");
int lineno = 0;
// we need to check file version -- if not found, then
char linebuf[2048]="";
while (dumpfile.good()) {
dbprintf(5, "scanning new line \"%s\"\n", linebuf);
if (strstr(linebuf, "File version number")) {
// bingo
dumpfile.getline(linebuf, 2048); // get comment
dumpfile.getline(linebuf, 2048); // blank line
dumpfile >> mFileVersion;
break;
}
else if (strstr(linebuf, "dataFileVersion =")) {
// for versions 4 and newer
sscanf(linebuf, "dataFileVersion = %lu", &mFileVersion);
break;
}
else if (strstr(linebuf, "Primary lines")) {
// no version available
mFileVersion = 0; // just to be clear
break;
}
dumpfile.getline(linebuf, 2048);
lineno++;
}
dumpfile.seekg(0, std::ios::beg);// seek to beginning again
dbprintf(2, "file version set to %u\n", mFileVersion);
if (mFileVersion == 42) {
throw string("Cannot find file version -- not a paraDIS file?");
}
int i=0;
if (mFileVersion == 0) {
string token;
while (dumpfile.good() && token != "minSideX")
dumpfile >> token;
while (dumpfile.good() && i<3) {
dumpfile >> token >> mDataMin[i] >> token >> token >> mDataMax[i] >>token;
i++;
}
}
else if (mFileVersion < 4) {
char linebuf[2048]="";
while (dumpfile.good() && !strstr(linebuf, "Minimum coordinate values"))
dumpfile.getline(linebuf, 2048);
if (!dumpfile.good()){
throw string("Cannot find minimum bounds from dumpfile ") + mDataFilename;
}
dumpfile.getline(linebuf, 2048);//get that stupid "#"
dumpfile >> mDataMin[0] >> mDataMin[1] >> mDataMin[2];
while (dumpfile.good() && !strstr(linebuf, "Maximum coordinate values"))
dumpfile.getline(linebuf, 2048);
if (!dumpfile.good()){
throw string( "Cannot find maximum bounds from dumpfile ")+ mDataFilename;
}
dumpfile.getline(linebuf, 2048);//get that stupid "#"
dumpfile >> mDataMax[0] >> mDataMax[1] >> mDataMax[2];
}
else { // must be file version 4
char linebuf[2048]="";
while (dumpfile.good() && !strstr(linebuf, "minCoordinates")){
dumpfile.getline(linebuf, 2048);
}
dumpfile >> mDataMin[0] >> mDataMin[1] >> mDataMin[2];
while (dumpfile.good() && !strstr(linebuf, "maxCoordinates")){
dumpfile.getline(linebuf, 2048);
}
dumpfile >> mDataMax[0] >> mDataMax[1] >> mDataMax[2];
}
mDataSize = mDataMax - mDataMin;
} catch (string err) {
throw string("Error in GetBounds:\n")+err;
}
dbprintf(2,"Done with ReadBounds\n");
return;
}
//======================================================================
void DataSet::ReadMinimalNodeFromFile(uint32_t &lineno, std::ifstream &datafile) {
MinimalNode theNode;
char comma;
int domainID, nodeID;
long old_id_junk, constraint_junk, numNeighbors;
float x,y,z, float_junk;
//-----------------------------------------------
// read the first line of node information
if (mFileVersion > 0) {
datafile >> domainID >> comma >> nodeID;
}
else { // old-style
datafile >> nodeID >> old_id_junk;
}
datafile >> x >> y >> z >> numNeighbors >> constraint_junk;
if (mFileVersion == 0){
datafile >> domainID >> old_id_junk;
}
if (!datafile.good()) {
throw string("error reading node");
}
++lineno;
NodeID theID(domainID, nodeID);
//------------------------------------------------
// done reading first line of node information
if (rclib::InBounds(rclib::Point<float>(x,y,z), mSubspaceMin, mSubspaceMax ))
theNode.InBounds(true);
theNode.SetID(theID);
//------------------------------------------
// read neighbor information
Neighbor theNeighbor;
int neighbornum = 0;
while (neighbornum < numNeighbors && datafile.good()) {
if (mFileVersion > 0)
datafile >> domainID >> comma >> nodeID;
else {
domainID = 0;
datafile >> nodeID;
}
// read and discard the entire next line, as we do not need burgers values right now. .
NodeID neighborID(domainID, nodeID);
datafile >> float_junk >> float_junk >> float_junk >> float_junk >> float_junk >> float_junk;
theNeighbor.SetEndpoints(theNode.GetNodeID(), neighborID);
mMinimalNeighbors.insert(theNeighbor); //set semantics guarantee it will only be inserted if unique, yay!
// however, this means we have to get it back out to save its address
std::set<Neighbor>::iterator pos =
mMinimalNeighbors.find(theNeighbor);
theNode.AddNeighbor(&(*pos));
if (!datafile.good()) {
throw string("error reading neighbor number ") + intToString(neighbornum);
}
++lineno;
++neighbornum;
};
//------------------------------------------------
// done reading neighbor information
theNode.SetFileOrderIndex(mMinimalNodes.size());
mMinimalNodes.push_back(theNode);
dbprintf(5, "pushed back new Minimal Node: %s\n", theNode.Stringify().c_str());
return;
}
//===========================================================================
void DataSet::CreateMinimalNodes(void){
dbprintf(2, "CreateMinimalNodes started...\n");
timer theTimer;
theTimer.start();
dbprintf(2, "Size of a minimal_node is %d bytes\n", sizeof(MinimalNode));
char linebuf[2048]="";
uint32_t nodenum = 0;
uint32_t lineno = 1;
ReadBounds();
try {
ifstream datafile(mDataFilename.c_str());
if (!datafile.good()){
throw string("Error: cannot open datafile ")+ mDataFilename;
}
// =================================================
/* get number of nodes */
mTotalDumpNodes = 0;
if (mFileVersion == 0) {
while (datafile.good() && !strstr(linebuf, "Number of nodes")) {
datafile.getline(linebuf, 2048);
++lineno;
}
if (!mTotalDumpNodes && datafile.good())
datafile >> mTotalDumpNodes; // did not read the whole line...
}
else if (mFileVersion < 4 ) {
while (datafile.good() && !strstr(linebuf, "Node count")) {
datafile.getline(linebuf, 2048);
}
datafile.getline(linebuf, 2048);//should be "#"
++lineno;
if (!strstr(linebuf, "#")) {
dbprintf(0, "ERROR: Expected line:\n#\n but got:\n%s\n", linebuf);
}
datafile >> mTotalDumpNodes;
if (!datafile) {
throw string("Error getting number of nodes");
}
}
else { //
while (datafile.good() && !strstr(linebuf, "nodeCount =")) {
datafile.getline(linebuf, 2048);
++lineno;
}
// dataFileVersion 4 just has different header, just parse it and treat it like the old "new" version
long nodeCount = 0;
sscanf(linebuf, "nodeCount = %lu", &nodeCount);
mTotalDumpNodes = nodeCount;
}
if (!mTotalDumpNodes) {
throw string( "Cannot find number of nodes in datafile");
}
// got number of nodes
// =================================================
//ready to read nodes in....
dbprintf(1, "Expecting %d nodes, for a total of %.1f megabytes in basic form\n",
mTotalDumpNodes, (float)mTotalDumpNodes*sizeof(MinimalNode)/(1024.0*1024));
while (datafile.good() && !strstr(linebuf, "Secondary lines:")) {
datafile.getline(linebuf, 2048);
++lineno;
}
if (mFileVersion > 0 && mFileVersion < 4) {
datafile.getline(linebuf, 2048);//should be "#"
++lineno;
if (!strstr(linebuf, "#")){
dbprintf(0, "ERROR: Expected line:\n#\n but got:\n%s\n", linebuf);
throw string("Error in file format");
}
}
if (!datafile.good()) {
throw string( "Error: cannot find first node in data file");
}
double theTime=theTimer.elapsed_time(), thePercent=0;
while (datafile.good() && nodenum++ < mTotalDumpNodes) {
if (dbg_isverbose())
Progress(theTimer, nodenum, mTotalDumpNodes, thePercent, 5, theTime, 60, "Reading datafile");
ReadMinimalNodeFromFile(lineno, datafile);
}
dbprintf(1, "\n");
} catch (string err) {
throw string("Error in GetNodes while reading node ") + intToString(nodenum) +" at line " + intToString(lineno) + ":\n" + err;
}
return;
dbprintf(2, "CreateMinimalNodes ended...\n");
}
//===========================================================================
bool DataSet::Mkdir(const char *dirname) {
dbprintf(3, "Mkdir(%s)",dirname);
#ifndef WIN32
DIR *dir = opendir(dirname);
if (!dir) {
if (mkdir(dirname, S_IRWXU | S_IRWXG | S_IRWXO )) {
string errmsg = string("Warning: could not create debug output directory: ") + mDebugOutputDir+ ". Stats will not be written." ;
cerr << errmsg << endl;
dbprintf(1, errmsg.c_str());
return false;
} else {
dbprintf(1, "Warning: created debug output directory ", dirname);
}
}else {
closedir(dir);
}
#else
if (_mkdir(dirname) != 0)
{
string errmsg = string("Warning: could not create debug output directory: ") + mDebugOutputDir+ ". Stats will not be written." ;
cerr << errmsg << endl;
dbprintf(1, errmsg.c_str());
return false;
}
#endif
return true;
}
//===========================================================================
void DataSet::DebugPrintMinimalNodes(void) {
std::string filename = mDebugOutputDir + string("/MinimalNodes-list.txt");
dbprintf(1, "Writing minimal nodes to debug file %s\n", filename.c_str());
if (!Mkdir(mDebugOutputDir.c_str())) return;
ofstream debugfile (filename.c_str());
if (!debugfile) {
string errmsg = string("Warning: cannot open debug file ")+filename+". " + strerror(errno);
cerr << errmsg << endl;
dbprintf(1, "%s\n", errmsg.c_str());
return;
}
debugfile << "data bounds: " << mDataMin.Stringify() << ", " << mDataMax.Stringify() << endl;
debugfile << "subspace bounds: " << mSubspaceMin.Stringify() << ", " << mSubspaceMax.Stringify() << endl;
std::vector<MinimalNode>::iterator pos = mMinimalNodes.begin(),
endpos = mMinimalNodes.end();
uint32_t nodenum = 0;
while (pos != endpos) {
debugfile << "MinimalNode " << nodenum++ <<":\n"<< pos->Stringify(true) << endl;
debugfile << "***************************************************" << endl << endl;
++pos;
}
debugfile <<"Total minimal nodes: " << nodenum << endl;
debugfile << "Total memory for minimal nodes: " << nodenum * sizeof(MinimalNode) << endl;
return ;
}
//===========================================================================
std::vector<MinimalNode *> DataSet::GetNeighborMinimalNodes(const MinimalNode &inode) {
std::vector<MinimalNode *> neighborNodes;
std::vector<const Neighbor *>::const_iterator neighbor_pos = inode.GetNeighbors().begin(), neighbor_endpos = inode.GetNeighbors().end();
while (neighbor_pos != neighbor_endpos) {
std::vector<MinimalNode>::iterator otherEnd =
lower_bound(mMinimalNodes.begin(), mMinimalNodes.end(),
MinimalNode((*neighbor_pos)->GetOtherEndpoint(inode.GetNodeID())));
if (otherEnd == mMinimalNodes.end())
throw string("Error in DataSet::GetNeighborMinimalNodes -- cannot find other end of neighbor relation from node ")+inode.Stringify(true);
// we have assumed that otherEnd exists in mMinimalNodes...
if (! (*otherEnd == inode))
neighborNodes.push_back(&(*otherEnd));
++neighbor_pos;
}
return neighborNodes;
}
//===========================================================================
void DataSet::MarkOOBNodeChain( MinimalNode &node, MinimalNode &original) {
MinimalNode *current = &node, *previous = &original;
/*
Create a loop, a bit torturous this way but avoids recursion, which might be very deep for long arms
*/
while (current != NULL) {
/*
If terminal, mark with full info and return
*/
std::vector<MinimalNode *>neighborNodes = GetNeighborMinimalNodes(*current);
if (neighborNodes.size() != 2) {
current->SetKeep();
return;
}
/*
Interior node: determine if it is connected to IB, if not, mark "need to keep"
*/
current->SetKeep();
std::vector<MinimalNode *>::iterator neighbor = neighborNodes.begin();
if (*neighbor == previous) {
++neighbor;
} if (*neighbor == previous) {
throw std::string("Error in DataSet::MarkOOBNodeChain -- a cycle of only two nodes was found.");
}
/*
If neighbors of IB nodes, then end of chain: return
*/
if ((*neighbor)->InBounds()) {
return;
}
previous = current;
current = *neighbor;
}/* end while (current != NULL) */
return;
}
//===========================================================================
void DataSet::ClassifyMinimalNodes(void){
/* Look at each node. If it's in bounds, it is FULL, and each neighbor is alos full. If the neibhbor is out of bounds and unmarked, then you must call MarkOOBNodeChain on it to capture PARTIAL and FULL out of bounds nodes. */
dbprintf(2, "ClassifyMinimalNodes started...\n");
sort(mMinimalNodes.begin(), mMinimalNodes.end());
std::vector<MinimalNode>::iterator node_pos = mMinimalNodes.begin(), node_endpos = mMinimalNodes.end();
int nodenum = 0;
try {
while (node_pos != node_endpos) {
if (node_pos->GetKeep() || ! node_pos->InBounds()) {
/* At the top level, we only inspect nodes that are inbounds, that we have not seen before. OOB neighbors are caught in CollapseNodeChain */
++node_pos;
continue;
}
node_pos->SetKeep(); /* We need it, yes, my Precious */
std::vector<MinimalNode *> neighborNodes =
GetNeighborMinimalNodes(*node_pos);
std::vector<MinimalNode *>::iterator neighbor = neighborNodes.begin();
while (neighbor != neighborNodes.end()) {
if (!(*neighbor)->InBounds() && !(*neighbor)->GetKeep()) {
MarkOOBNodeChain(*(*neighbor), *node_pos);
}
++neighbor;
}
++node_pos;
++nodenum;
}
} catch (string err) {
err = string("Error in ClassifyMinimalNodes, node ") + intToString(nodenum) + ": " + err;
throw err;
}
dbprintf(2, "ClassifyMinimalNodes ended...\n\n");
return;
}
//===========================================================================
bool cullminimalnode(const MinimalNode &node) {
return !node.GetKeep();
}
//===========================================================================
/*!
for use in CullAndResortMinimalNodes
*/
bool FileOrderPredicate(const MinimalNode &n1, const MinimalNode &n2) {
return n1.ComesBeforeInFile(n2);
}
//===========================================================================
void DataSet::CullAndResortMinimalNodes(void) {
dbprintf(2, "CullMinimalNodes started...\n\n");
std::vector<MinimalNode>::iterator last =
remove_if(mMinimalNodes.begin(), mMinimalNodes.end(), cullminimalnode);
mMinimalNodes.erase(last, mMinimalNodes.end());
/*!
Re-sort in file order to make finding full node counterparts go quicker
*/
sort(mMinimalNodes.begin(), mMinimalNodes.end(), FileOrderPredicate);
dbprintf(2, "CullMinimalNodes ended...\n\n");
return;
}
//===========================================================================
void DataSet::ReadFullNodeFromFile(std::ifstream &datafile, MinimalNode &theNode){
FullNode *fullNode = new FullNode;
char comma;
long old_id_junk, constraint_junk, numNeighbors;
float float_junk, location[3];
int domainID, nodeID, neighborDomain, neighborID, numskipped=0;
string junkstring;
dbprintf(5, "ReadFullNodeFromFile\n");
try {
while (!( theNode == *fullNode)) {
//-----------------------------------------------
// read the first line of node information and see if it matches theNode
if (mFileVersion > 0) {
datafile >> domainID >> comma >> nodeID;
if (!datafile.good()) {
throw string("error reading domainID and nodeID of node");
}
dbprintf(5, "Got node id (%d, %d)\n", domainID, nodeID);
} else {
datafile >> nodeID >> old_id_junk;
if (!datafile.good()) {
throw string("error reading nodeID");
}
}
/*!
read location
*/
int i=0; while (i < 3) datafile >> location[i++];
if (!datafile.good()) {
throw string("error reading location");
}
dbprintf(5, "read location (%f, %f, %f)\n", location[0], location[1], location[2]);
datafile >> numNeighbors >> constraint_junk;
if (!datafile.good()) {
throw string("error reading numNeighbors");
}
if (mFileVersion == 0){
datafile >> domainID >> old_id_junk;
if (!datafile.good()) {
throw string("error reading domainID");
}
}
if (!datafile.good()) {
throw string("error reading node");
}
if (theNode == NodeID(domainID, nodeID)) {
*fullNode = theNode;
}
else {
/*!
read past the remaining node information for this node.
*/
//dbprintf(5, "skipping node: (%d, %d)\n", domainID, nodeID);
getline(datafile, junkstring); // finish the current line
if (!datafile.good()) {
throw string("error looking for end of line");
}
int neighborNum = 0;
while (neighborNum < numNeighbors) {
int linenum = 0; while (linenum < 2) {
getline(datafile, junkstring);
if (!datafile.good()) {
throw string("error reading line ")+ intToString(linenum) + string(" of neighbor ") + intToString(neighborNum);
}
++linenum;
}
++neighborNum;
}
++numskipped;
}
}
dbprintf(5, "Found node info for minimal node (%d, %d)\n", domainID, nodeID);
//------------------------------------------------
// done reading first line of node information
fullNode->SetLocation(location);
fullNode->SetIndex(mFullNodes.size());
//------------------------------------------
// read neighbor information
int neighbornum = 0;
float burgers[3];
//Neighbor currentNeighbor; //from file
try {
ArmSegment *currentSegment = NULL;
while (neighbornum < numNeighbors && datafile.good()) {
currentSegment = new ArmSegment;
if (mFileVersion > 0) {
datafile >> neighborDomain >> comma >> neighborID;
if (!datafile.good()) {
throw string("error reading neighborDomain and neighborID of neighbor");
}
}
else {
neighborDomain = 0;
datafile >> neighborID;
if (!datafile.good()) {
throw string("error reading neighborID");
}
}
currentSegment->SetEndpoints(fullNode, neighborDomain, neighborID);
// read burgers value and discard "nx, ny, nz".
datafile >> burgers[0] >> burgers[1] >> burgers[2] >> float_junk >> float_junk >> float_junk;
if (!datafile.good()) {
throw string("error reading burgers values");
}
currentSegment->ComputeBurgersType(burgers);
#ifdef __GNUC__
ArmSegmentSet::iterator foundSegment = mQuickFindArmSegments.find(currentSegment);
if (foundSegment == mQuickFindArmSegments.end()) {
currentSegment->SetID();
mQuickFindArmSegments.insert(currentSegment);
foundSegment = mQuickFindArmSegments.find(currentSegment);
} else {
(*foundSegment)->ReplacePlaceholder(fullNode);
}
fullNode->AddNeighbor((*foundSegment));
#endif
++neighbornum;
}; // done reading neighbor information
} catch (string err) {
throw string("Error in DataSet::ReadFullNode reading neighbor ")+intToString(neighbornum)+":" + err;
}
} catch (string err) {
throw string("Error trying to read full node info corresponding to ")+theNode.Stringify(true) + string("numskipped is ")+intToString(numskipped) + string("\n") + err;
}
fullNode->SetNodeType();
dbprintf(5, "Done creating full node %s\n", fullNode->Stringify(true).c_str());
mFullNodes.push_back(fullNode);
return;
} /* end ReadFullNodeFromFile */
//===========================================================================
void DataSet::CreateFullNodesAndArmSegments(void){
dbprintf(2, "CreateFullNodes started...\n");
reverse(mMinimalNodes.begin(), mMinimalNodes.end());
timer theTimer;
theTimer.start();
dbprintf(2, "Size of a full node is %d bytes, so expect to use %d megabytes\n", sizeof(FullNode), mMinimalNodes.size()*sizeof(FullNode)/1000000);
char linebuf[2048]="";
uint32_t nodenum = 0;
try {
ifstream datafile(mDataFilename.c_str());
if (!datafile.good()){
throw string("Error: cannot open datafile ")+ mDataFilename;
}
while (datafile.good() && !strstr(linebuf, "Secondary lines:"))
datafile.getline(linebuf, 2048);
if (mFileVersion > 0 && mFileVersion < 4) {
datafile.getline(linebuf, 2048);//should be "#"
if (!strstr(linebuf, "#")) {
dbprintf(0, "WARNING: Expected line:\n#\n but got:\n%s\n", linebuf);
throw string("Bad file format in line: ")+string(linebuf);
}
}
if (!datafile.good()) {
throw string( "Error: cannot find first node in data file");
}
double theTime=theTimer.elapsed_time(), thePercent=0;
uint32_t nodelimit = mMinimalNodes.size();
std::vector<MinimalNode>::reverse_iterator rpos = mMinimalNodes.rbegin(), rend = mMinimalNodes.rend();
//dbprintf(2, "\n");
while (datafile.good() && nodenum < nodelimit && rpos != rend) {
if (dbg_isverbose())
Progress( theTimer, nodenum, nodelimit, thePercent, 5, theTime, 60, "Reading datafile");
ReadFullNodeFromFile(datafile, *rpos++);
/*!
We have "used up" the last node in the vector, delete it to save memory
*/
mMinimalNodes.pop_back();
++nodenum;
}
dbprintf(1, "\n");
if (nodenum != nodelimit ) throw string("terminating before nodenum == nodelimit\n");
if (rpos != rend) throw string("terminating before rpos == rend\n");
} catch (string err) {
throw string("Error in DataSet::CreateFullNodes while reading node ") + intToString(nodenum) +":\n" + err;
}
dbprintf(2, "CreateFullNodes ended...\n");
return;
}
//===========================================================================
void DataSet::WrapBoundarySegments(void) {
ArmSegment *newSegment = NULL;
FullNode *newnode0, *newnode1;
ArmSegmentSet::const_iterator segpos = mQuickFindArmSegments.begin(),
endseg = mQuickFindArmSegments.end();
while (segpos != endseg) {
if ((*segpos)->Wrap(mDataSize, newSegment, newnode0, newnode1)) {
newSegment->SetID();
mWrappedArmSegments.push_back(newSegment);
newnode0->SetIndex(mFullNodes.size());
mFullNodes.push_back(newnode0);
newnode1->SetIndex(mFullNodes.size());
mFullNodes.push_back(newnode1);
dbprintf(5, "\n***********\nWrapBoundarySegments: Created new wrapped node %s", newnode0->GetNodeID().Stringify().c_str());
dbprintf(5, "\n***********\nWrapBoundarySegments: Created new wrapped node %s", newnode1->GetNodeID().Stringify().c_str());
dbprintf(5, "\n***********\nWrapBoundarySegments: Created new wrapped segment %s", newSegment->Stringify().c_str());
}
++segpos;
}
return;
}
//===========================================================================
void DataSet::DebugPrintFullNodes(const char *name) {
uint32_t monsterTypes[5] = {0}; /* types: -44, -4, -3, -33, sum of monsters */
string basename="FullNodes-list.txt";
if (name) basename = name;
std::string filename = mDebugOutputDir + "/" + basename;
dbprintf(1, "Writing full nodes to debug file %s\n", filename.c_str());
if (!Mkdir (mDebugOutputDir.c_str())) return;
ofstream debugfile (filename.c_str());
std::vector<FullNode*>::iterator nodepos = mFullNodes.begin(),
endnodepos = mFullNodes.end();
uint32_t nodenum=0;
while (nodepos != endnodepos) {
debugfile << "FullNode " << nodenum++ <<":\n" << (*nodepos)->Stringify(true ) << endl;
debugfile << "**************************************************************" << endl << endl;
int nodetype = (*nodepos)->GetNodeType();
if (nodetype == -44) monsterTypes[0]++;
else if (nodetype == -4) monsterTypes[1]++;
else if (nodetype == -3) {
debugfile << "Butterfly Node: " << (*nodepos)->GetNodeID().Stringify() << endl;
monsterTypes[2]++;
}
else if (nodetype == -33) monsterTypes[3]++;
if (nodetype < 0) monsterTypes[4]++;
++nodepos;
}
debugfile <<"Total full nodes: " << nodenum << endl;
debugfile << monsterTypes[0] << " type -44 nodes" << endl;
debugfile << monsterTypes[1] << " type -4 nodes" << endl;
debugfile << monsterTypes[2] << " type -3 nodes" << endl;
debugfile << monsterTypes[3] << " type -33 nodes" << endl;
debugfile << monsterTypes[4] << " monster nodes" << endl;
debugfile <<"Total memory for nodes and their pointers: " << mFullNodes.size() * (sizeof(FullNode) + sizeof(FullNode *)) << endl;
return;
}
//===========================================================================
void DataSet::FindEndOfArm(FullNodeIterator &iStartNode, FullNode **oEndNode, ArmSegment *iStartSegment, ArmSegment *&oEndSegment
#ifdef DEBUG
, Arm &theArm
#endif
) {
//FullNodeIterator currentNode = iStartNode, otherEnd;
FullNode *currentNode = *iStartNode, *otherEnd;
ArmSegment *currentSegment = iStartSegment;
/* loop, don't recurse */
while(true) {
#ifdef DEBUG
if (!currentSegment->Seen()) {
++theArm.mNumSegments;
dbprintf(5, "Arm %d: adding segment %s\n", theArm.mArmID, currentSegment->Stringify().c_str());
}
#endif
currentSegment->SetSeen(true);
otherEnd = currentSegment->GetOtherEndpoint(currentNode);
if ((otherEnd)->GetNodeID() == (*iStartNode)->GetNodeID() ||
(otherEnd)->GetNumNeighbors() != 2) {
if ((otherEnd)->GetNumNeighbors() == 2) {
dbprintf(4, "Arm %d: LOOP detected\n", theArm.mArmID);
}
/*!
we have looped or found a terminal node -- stop
*/
oEndSegment = currentSegment;
*oEndNode = otherEnd;
return;
}
/*!
Move on to the next segment, we are not done yet.
*/
if (*currentSegment == *(otherEnd)->GetNeighbor(0)) {
currentSegment = const_cast<ArmSegment*>(otherEnd->GetNeighbor(1));
} else {
currentSegment = const_cast<ArmSegment*>(otherEnd->GetNeighbor(0));
}
currentNode = otherEnd;
}
return;
}
//===========================================================================
void DataSet::BuildArms(void) {
dbprintf(2, "BuildArms started.\n");
Arm theArm; // reuse to avoid calling umpteen constructors
uint32_t armnum = 0;
/*!
For now, just look at every inbounds node and if it has not been looked at, make an arm out of it.
*/
vector<FullNode*>::iterator nodepos = mFullNodes.begin(), nodeend = mFullNodes.end();
int nodenum = 0;
/*!
If you start from an out of bounds node, you will often trace out arms that have no nodes in them! That would be segfault fodder.
*/
try {
while (nodepos != nodeend) {
if (!(*nodepos)->InBounds()) {
++nodepos;
continue;
}
int neighbornum = 0, numneighbors = (*nodepos)->GetNumNeighbors();
FullNode *endNode0, *endNode1;
ArmSegment *endSegment0 = NULL, *endSegment1 = NULL,
*startSegment0 = NULL, *startSegment1 = NULL;
if (numneighbors == 2) {
startSegment0 = const_cast< ArmSegment*>((*nodepos)->GetNeighbor(0));
if (!startSegment0->Seen()) {
#ifdef DEBUG
dbprintf(5, "Starting in middle of arm\n");
#endif
theArm.Clear();
theArm.SetID();
FindEndOfArm(nodepos, &endNode0, startSegment0, endSegment0
#ifdef DEBUG
, theArm
#endif
);
theArm.mTerminalNodes.push_back(endNode0);
theArm.mTerminalSegments.push_back(endSegment0);
startSegment1 = const_cast< ArmSegment*>((*nodepos)->GetNeighbor(1));
FindEndOfArm(nodepos, &endNode1,startSegment1, endSegment1
#ifdef DEBUG
, theArm
#endif
);
if (endNode0 != endNode1) {
theArm.mTerminalNodes.push_back(endNode1);
}
if (endSegment0 != endSegment1) {
theArm.mTerminalSegments.push_back(endSegment1);
}
dbprintf(5, "(1) Pushing back arm %d: %s\n", armnum++, theArm.Stringify().c_str());
mArms.push_back(theArm);
}
} else {
while (neighbornum < numneighbors) {
startSegment0 =
const_cast< ArmSegment*>((*nodepos)->GetNeighbor(neighbornum));
if (!startSegment0->Seen()) {
#ifdef DEBUG
dbprintf(5, "Starting at one end of arm\n");
#endif
theArm.Clear();
theArm.SetID();
FindEndOfArm(nodepos, &endNode0, startSegment0, endSegment0
#ifdef DEBUG
, theArm
#endif
);
theArm.mTerminalNodes.push_back(*nodepos);
if (endNode0 != *nodepos ) {
theArm.mTerminalNodes.push_back(endNode0);
}
theArm.mTerminalSegments.push_back(startSegment0);
if (endSegment0 != startSegment0) {
theArm.mTerminalSegments.push_back(endSegment0);
}
dbprintf(5, "(2) Pushing back arm %d: %s\n", armnum++, theArm.Stringify().c_str());
mArms.push_back(theArm);
}
++neighbornum;
}
}
++nodepos;
++nodenum;
}
} catch (string err) {
throw string("Arm #")+intToString(armnum)+": "+err;
}
#if LINKED_LOOPS
int armNum = mArms.size();
while (armNum--) {
mArms[armNum].SetSegmentBackPointers();
}
#endif
dbprintf(2, "BuildArms ended; %d arms created.\n", armnum);
return;
}
//===========================================================================
void DataSet::DebugPrintArms(void) {
std::string filename = mDebugOutputDir + string("/Arms-list.txt");
dbprintf(1, "Writing arms to debug file %s\n", filename.c_str());
if (!Mkdir (mDebugOutputDir.c_str())) return;
ofstream debugfile (filename.c_str());
debugfile <<"Printout of all arms." << endl;
vector<Arm>::iterator pos = mArms.begin(), endpos = mArms.end();
uint32_t armnum = 0;
while (pos != endpos) {
debugfile << "Arm #" << armnum << ": " << pos->Stringify() << endl;
//vector<ArmSegment *>segments = pos->GetArmSegments();
//vector<FullNode *>nodes = pos->GetNodes();
debugfile << "******************************************************" << endl << endl;
++armnum;
++pos;
}
debugfile << "Number of arms: " << mArms.size()<< endl;
debugfile << "Total memory used by arms: " << mArms.size() * sizeof(Arm) << endl;
debugfile << "Number of arm segments: " << mFinalArmSegments.size() << endl;
debugfile << "Memory used by arm segments and their pointers: " << mFinalArmSegments.size() * (sizeof(ArmSegment) + sizeof(ArmSegmentSetElement)) << endl;
return;
}
//===========================================================================
void DataSet::FindButterflies(void) {
dbprintf(2, "FindButterflies starting...\n");
int armnum=0;
vector<Arm>::iterator armpos = mArms.begin(), armend = mArms.end();
while (armpos != armend) {
armpos->CheckForButterfly();
++armnum;
++armpos;
}
dbprintf(2, "FindButterflies ended.\n");
return;
}
//===========================================================================
void DataSet::ClassifyArms(void) {
dbprintf(2, "ClassifyArms starting...\n");
vector<Arm>::iterator armpos = mArms.begin(), armend = mArms.end();
while (armpos != armend) {
armpos->Classify();
++armpos;
}
dbprintf(2, "ClassifyArms ended.\n");
return;
}
//===========================================================================
void DataSet::ComputeArmLengths(void) {
dbprintf(2, "ComputeArmLengths starting...\n");
vector<Arm>::iterator armpos = mArms.begin(), armend = mArms.end();
while (armpos != armend) {
armpos->ComputeLength();
++armpos;
}
dbprintf(2, "ComputeArmLengths ended.\n");
return;
}
//==========================================================================
/*!
Unary predicate for using STL to remove all useless nodes in a range
*/
bool NodeIsUseless(FullNode *node) {
return false;
return node->GetNodeType() == USELESS_NODE;
}
//==========================================================================
/*!
This is a unary predicate used to efficiently delete all useless arms, that have at least one useless terminal nodes.
*/
bool ArmIsUseless( Arm &theArm) {
return theArm.IsUseless();
}
//==========================================================================
/*!
To be used with for_each() to delete all nodes in the container
*/
void DeleteNode(FullNode *node) {
delete node;
}
//===========================================================================
void DataSet::DeleteUselessNodesAndSegments(void) {
dbprintf(2, "DeleteUselessNodesAndSegments starting...\n");
int numdeleted = 0;
/*!
First identify every node that is out of bounds and has no inbound neighbor -- these are useless nodes.
*/
dbprintf(2, "Identifying useless nodes...\n ");
bool deletable = false;
vector<FullNode *>::iterator nodepos = mFullNodes.begin(),
nodeend = mFullNodes.end();
/* while (nodepos != nodeend) {
if ((*nodepos)->GetNodeType() != USELESS_NODE &&
!(*nodepos)->InBounds()) {
deletable = true;
int nbr = (*nodepos)->GetNumNeighbors();
while (nbr--) {
if ((*nodepos)->GetNeighbor(nbr)->GetOtherEndpoint((*nodepos))->InBounds()) {
deletable=false;
break;
}
}
if (deletable) (*nodepos)->SetNodeType(USELESS_NODE);
}
++nodepos;
}
*/
/*!
Next find all arms that have a useless node as either endpoint. Delete them.
*/
/* dbprintf(2, "Identifying and deleting useless arms...\n");
numdeleted = mArms.size();
vector<Arm>::iterator armpos = mArms.begin(), armend = mArms.end();
armpos = remove_if(armpos, armend, ArmIsUseless);
mArms.erase(armpos, mArms.end());
numdeleted -= mArms.size();
dbprintf(2, "Deleted %d arms.\n", numdeleted);
*/
/*!
Useless arm segments are arm segments that have a useless node as either endpoint, or two out of bounds endpoints. Delete those while copying non-useless arm segments into the final vector.
*/
dbprintf(2, "Identifying and deleting useless segments...\n");
numdeleted = mQuickFindArmSegments.size() + mWrappedArmSegments.size();
ArmSegmentSet::const_iterator segpos = mQuickFindArmSegments.begin();
ArmSegment *theSegment = NULL;
while (segpos != mQuickFindArmSegments.end()) {
theSegment = *segpos;
if ((*segpos)->IsUseless()) {
dbprintf(5, "Deleting segment %d\n", theSegment->GetID());
delete theSegment;
} else {
dbprintf(5, "Keeping segment %d\n", theSegment->GetID());
mFinalArmSegments.push_back(theSegment);
}
++segpos;
}
mQuickFindArmSegments.clear();
vector<ArmSegment*>::iterator wrappos = mWrappedArmSegments.begin();
while (wrappos != mWrappedArmSegments.end()) {
if ((*wrappos)->IsUseless()) {
delete *wrappos;
} else {
mFinalArmSegments.push_back(*wrappos);
}
++wrappos;
}
mWrappedArmSegments.clear();
numdeleted -= mFinalArmSegments.size();
dbprintf(2, "Deleted %d segments\n", numdeleted);
/*!
Finally, go through and delete all the useless nodes
*/
dbprintf(2, "Deleting useless nodes...\n");
numdeleted = mFullNodes.size();
nodepos = mFullNodes.begin();
while (nodepos != mFullNodes.end()) {
int nodetype = (*nodepos)->GetNodeType();
if (nodetype == USELESS_NODE) {
mUselessNodes.push_back(*nodepos);
} else {
if (nodetype > 8) {
string err = string("Error: bad type ") + intToString( nodetype) + " in node: " + (*nodepos)->Stringify();
throw err;
}
}
++nodepos;
}
nodepos = remove_if(mFullNodes.begin(), mFullNodes.end(), NodeIsUseless);
mFullNodes.erase(nodepos, mFullNodes.end());
for_each(mUselessNodes.begin(), mUselessNodes.end(), DeleteNode);
mUselessNodes.clear();
numdeleted -= mFullNodes.size();
dbprintf(2, "Deleted %d nodes\n", numdeleted);
dbprintf(2, "DeleteUselessNodesAndSegments ended.\n");
return;
}
//===========================================================================
void DataSet::ComputeSubspace(void){
dbprintf(2, "starting ComputeSubspace\n");
mSubspaceMax = mDataMax;
mSubspaceMin = mDataMin;
rclib::Point<float> chunksize = mDataSize;
if (mNumProcs > 1) {
// 2) return;
/*!
Break space up into chunks
*/
int numsplits = 0;
int numpieces = 1;
int current_dimension = 0; // X, Y or Z
int numchunks[3] = {1, 1, 1};
while (numpieces < mNumProcs) {
++numsplits;
numpieces *= 2;
chunksize[current_dimension] /= 2.0;
numchunks[current_dimension] ++;
current_dimension = (current_dimension + 1)%3;
}
/*!
Now exactly locate our chunk bounds
*/
int leftover_pieces = numpieces % mNumProcs;
int currentproc = 0;
rclib::Point<float> currentMin = mSubspaceMin;
int i,j,k;
bool keepGoing = true;
for (k = 0, currentMin[0] = mSubspaceMin[0];
k < numchunks[2] && keepGoing;
k++, currentMin[2] += chunksize[2]){
for (j = 0, currentMin[1] = mSubspaceMin[1];
j < numchunks[1] && keepGoing;
j++, currentMin[1] += chunksize[1]){
for (i = 0, currentMin[0] = mSubspaceMin[0];
i < numchunks[0] && keepGoing;
i++, currentMin[0] += chunksize[0]){
if (currentproc < mProcNum) {
if (currentproc < leftover_pieces) {
/*!
The leftover pieces get given to the first procs
*/
currentMin[0] += chunksize[0];
i++; // it's ok, i is always a multiple of two
}
} else {
mSubspaceMin = currentMin;
mSubspaceMax = mSubspaceMin + chunksize;
if (currentproc < leftover_pieces) {
mSubspaceMax[0] += chunksize[0];
}
keepGoing = false;
}
++currentproc;
}
}
}
dbprintf(2, "done with ComputeSubspace\n");
}
dbprintf(2, "Computed subspace min = %s and max = %s\n", mSubspaceMin.Stringify().c_str(), mSubspaceMax.Stringify().c_str());
return;
}
//=========================================================================
void DataSet::RenumberNodes(void) {
uint32_t nodenum = 0, numnodes = mFullNodes.size();
while (nodenum != numnodes) {
mFullNodes[nodenum]->SetIndex(nodenum);
++nodenum;
}
}
//===========================================================================
void DataSet::ReadData(std::string filename){
dbprintf(1, "ReadData called with debug level %d\n", dbg_isverbose());
try {
if (filename != "") {
mDataFilename = filename;
}
dbprintf(2, "mDataFilename is %s\n", mDataFilename.c_str());
if (mDataFilename == "") throw string("Empty filename in ReadData");
ReadBounds();
if (mSubspaceMin == mSubspaceMax && mSubspaceMax == rclib::Point<float>(0.0)) {
/*!
if user hasn't set min and max, then figure out our spatial bounds.
*/
ComputeSubspace();
}
#ifdef DEBUG_SUBSPACES
/*!
Testing code generates bounds for lots of processor configs and prints them out to make sure that subspaces are being correctly computed.
*/
ReadBounds();
mNumProcs = 8;
while (mNumProcs) {
cout << endl << "*************************************************" << endl;
cout << "mNumProcs = " << mNumProcs << endl;
mProcNum = mNumProcs;
while (mProcNum--) {
cout << "******************" << endl;
cout << "mProcNum = " << mProcNum << endl;
ComputeSubspace();
cout << "mSubspaceMin: " << mSubspaceMin.Stringify() << endl;
cout << "mSubspaceMax: " << mSubspaceMax.Stringify() << endl;
}
mNumProcs --;
}
#endif
/*!
Announce to the nodes what their bounds are for wrapping
*/
FullNode::SetBounds(mSubspaceMin, mSubspaceMax);
CreateMinimalNodes();
ClassifyMinimalNodes();
if (mDoDebugOutput) {
DebugPrintMinimalNodes();
}
CullAndResortMinimalNodes();
CreateFullNodesAndArmSegments();
BuildArms();
FindButterflies();
ClassifyArms();
//PrintArmStats();
#ifdef DEBUG
if (mDoDebugOutput) {
DebugPrintFullNodes("NodesBeforeDeletion");
}
#endif
/* We can now compute arm lengths properly */
ComputeArmLengths();
/* this used to go before BuildArms() */
WrapBoundarySegments();
DeleteUselessNodesAndSegments();
RenumberNodes();
if (mDoDebugOutput) {
DebugPrintArms();
}
if (mDoDebugOutput) {
DebugPrintFullNodes();
}
} catch (string err) {
cerr << "An exception occurred" << endl;
throw string("Error in DataSet::ReadData reading data from file ")+mDataFilename+":\n" + err;
}
dbprintf(1, "ReadData complete\n");
return;
}
} // end namespace paraDIS
|