1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
|
/*!
\file paradis.h
\brief data structures and API for libparadis
Definition, needed to find a node in a std::set<Node>: node A > node B iff ( domain A > domain B ) || ( domain A == domain B && node ID A > node ID B ). segment A > segment B iff segA.nodes[0] > segB.nodes[0].
------------------------------------------------------------------
ALGORITHM OVERVIEW
-- create all relevant IB, OOB, and IOOB nodes and related arm segments
-- classify all arms as 100 or 111
-- discover all monster and butterfly nodes
------------------------------------------------------------------
1) DONE
Make a first pass through the file: load all as MinimalNodes, with minimal info: {domain and ID, whether out of bounds, neighbor IDs}
NOTES:
-- Need to use STL set instead of a vector, to make finds be logarithmic, else searching for neighbor nodes will be a big hit. This is because node IDs are patchy within domains and duplicated across domains. So minimal_node needs operator <();
------------------------------------------------------------------
2) DONE
Mark all nodes as one of three possible MinimalNode::NodeTypes:
A) NoInfo -- Full information needed (FullNodes) (in bounds or direct neighbor to in bounds or terminal OOB node which terminates a collapsible chain of OOB interior segments).
B) PartialInfo -- Partial information needed (PartialNodes) (need just position and neighbor info to compute the length of a collapsible chain of OOB interior segments)
C) NoInfo -- Not needed (none of the above applies)
------------------------------------------------------------------
3) DONE: cull unneeded MinimalNodes from memory. Release the memory for the MinimalNeighbors -- it can be most easily just reobtained in the file pass on the next step.
------------------------------------------------------------------
4) CHANGED: Make another pass through file: now as each node is seen, if it corresponds to an existing MinimalNode, then create a FullNode and delete the MinimalNode. Also, create ArmSegments related to the FullNode if they don't exist, and add the FullNode as a pointer in the ArmSegment.
------------------------------------------------------------------
5) DONE: The data is periodic. Go back and find all segments that connect two nodes such that if one is "wrapped" around any boundary of the data, it is closer to the other end than if it is not so wrapped. Each such segment found requires creation of one new segment and two new "wrapped" nodes. "wrapped" nodes are those created for this purpose, which lie on the intersection of the segment with the bounds of the subspace. When done, the wrapped segment, which normally would draw a crazy line all the way across the data, is replaced with two new segments that are one data space apart from each other.
------------------------------------------------------------------
6) DONE, BUT COMMENTED OUT AS DESTRUCTIVE
We no longer do this. All FullNodes are kept, in bounds or not. This is because deleting "useless" nodes was causing significant portions of arms to not get drawn, and there is no point to this. Parallelism will proceed by another mechanism.
IN THE FUTURE, to save memory, we could implement the following:
Segments that connect two PartialNodes are PartialSegments. Segments that connect two OOB FullNodes are CollapsedSegments. Segments that connect an IB FullNode to another node are FullSegments. Only FullSegments are drawn.
HOWEVER, For the first implementation, we will not distinguish between Partial and Full Segments, and we will not even collapse arms, so that we can get a good view of what things are like. After it is clear that we are making sensible things, we can collapse arms to save memory.
------------------------------------------------------------------
6) DONE
Go back and classify all terminal nodes as monsters and butterflies.
------------------------------------------------------------------
7) NEW:
Go through all the segments and split any that cross the subspace boundaries into two half-segments, by creating a new node at the intersection of the segment and the data bounds and a new segment for the new second half of the now-split segment. .
------------------------------------------------------------------
8) You now have a complete set of data for the given bounds. Let the user (e.g. VisIt or povrayDumper) do the filtering to determine what gets drawn. I could have done filtering within the library for performance reasons, but I don't think this is a good idea. The bulk of the slowdown is in rendering for PovRay, and VisIt will do good filtering by itself.
=========================================================================
CHANGES
2010-03-12 Rich Cook
Add two new types: NN_+++_short and NN_100_short.
*/
#ifndef PARADIS_H
#define PARADIS_H
// set this to 1 to re-enable linked loops code
#define LINKED_LOOPS 0
#define DEBUG 1
/* now for the API */
#include <boost/cstdint.hpp>
using boost::int8_t;
using boost::int16_t;
using boost::int32_t;
using boost::uint32_t;
#include <stdio.h>
#include <vector>
#include <set>
#include <string>
#include <fstream>
#include <iostream>
#include <ostream>
#include <math.h>
#include "RC_cpp_lib/RCLibPoint.h"
#include "RC_cpp_lib/stringutil.h" /* from RC_c_lib, is this a good idea? */
#include "RC_c_lib/debugutil.h" /* from RC_c_lib, now we're committed. */
/* ======================================== */
/*!
Two special FullNode types, for special occasions. PLACEHOLDER_NODE is used in ArmSegments for temporary nodes not yet seen in the data file. USELESS_NODE is an out-of-bounds node without any in-bounds neighbors.
*/
#define PLACEHOLDER_NODE (-42)
#define USELESS_NODE (-43)
/* ======================================== */
//=============================================================================
namespace paraDIS {
class FullNode;
/*!
Unary predicate for trying to delete nodes. this is way harder than it should be.
*/
bool NodeIsUseless(FullNode *node);
//============================================================
class NodeID {
public:
NodeID() {mDomainID = -1; mNodeID = -1; }
NodeID(const NodeID &other) {
mDomainID = other.mDomainID;
mNodeID = other.mNodeID;
}
NodeID(int16_t domain, int32_t node) {
mDomainID = domain;
mNodeID = node;
}
/*!
for ordering sets and hash lookups
*/
bool operator == (const NodeID &other) const {
return (mDomainID == other.mDomainID && mNodeID == other.mNodeID);
}
/*!
Some nodes are created with negative Node IDs, and it's useful to negate them for comparison. The const return type should allow a compiler return optimization.
*/
const NodeID operator -() {
return NodeID(-mDomainID, -mNodeID);
}
/*!
for ordering sets of MinimalNodes. Since MinimalNodes have no negative node IDs, we do not check absolute values here.
*/
bool operator <(const NodeID &other) const {
return (mDomainID < other.mDomainID ||
mDomainID == other.mDomainID &&
mNodeID < other.mNodeID);
}
/*!
Accessor function
*/
void Set(int16_t domain, int32_t node) {
mDomainID = domain;
mNodeID = node;
return ;
}
/*!
Accessor function
*/
int16_t GetDomainID(void) const { return mDomainID; }
/*!
Accessor function
*/
int32_t GetNodeID(void) const {return mNodeID; }
/*!
Convert NodeID to string, defining this gives me << for freee
*/
std::string Stringify(void) const {
std::string s("NodeID: (domain id, node id) = (");
s += intToString(mDomainID);
s += ", ";
s += intToString(mNodeID);
s += ")";
return s;
}
private:
int16_t mDomainID;
int32_t mNodeID;
};
//===========================================================================
class Neighbor; // forward declaration
/*! class Node
\brief Abstract base class
*/
class Node {
//-----------------------------------------------------
// public API
public:
Node() :mInBounds(false) { }
Node(const NodeID &id):mID(id), mInBounds(false) { }
/*!
virtual destructor assures proper deletion
*/
virtual ~Node() {}
/*!
Used in comparing data read from the file with the current Node.
*/
bool operator ==(const NodeID &compare) const {
return this->mID == compare;
}
/*!
Used for ordering sets? Might not be needed.
*/
bool operator ==(const Node &other) const {
return this->mID == other.GetNodeID();
}
/*!
Used for ordering vectors, etc.
*/
bool operator <(const Node &other) const {
return this->mID < other.GetNodeID();
}
/*!
Accessor function
*/
void InBounds(bool truth) { mInBounds = truth; }
/*!
Accessor function
*/
bool InBounds(void) const { return mInBounds; }
/*!
Accessor function
*/
void SetID(const NodeID &id) {
mID = id;
return ;
}
/*!
Accessor function
*/
const NodeID &GetNodeID(void) const { return mID; }
int32_t GetNodeSimulationDomain(void) const { return mID.GetDomainID(); }
int32_t GetNodeSimulationID(void) const { return mID.GetNodeID(); }
/*!
conversion of Node to string
*/
virtual std::string Stringify(void) const;
//-----------------------------------------------------
protected:
/*!
needed to find a node in a set<MinimalNode>
*/
NodeID mID;
/*!
Handy to just set this once -- all nodes need this
*/
bool mInBounds;
friend class FullNode;
};
//=============================================
/*! class Neighbor
Concrete base class
Contains no burgers information to save memory.
Invariant: mEndpoints[0] < mEndpoints[1]
*/
class Neighbor {
public:
Neighbor() { }
virtual ~Neighbor() {}
/*!
Accessor to set endpoints in proper order so that mEndpoints[0] < mEndpoints[1]
*/
void SetEndpoints(const NodeID &ep1, const NodeID &ep2) {
if (ep1 == ep2) {
throw std::string("Error in Neighbor::SetEndpoints: both endpoints are the same!");
}
if (ep1 < ep2) {
mEndpoints[0] = ep1;
mEndpoints[1] = ep2;
} else {
mEndpoints[0] = ep2;
mEndpoints[1] = ep1;
}
return;
}
/*!
Common operation: we have one node ID, but we're looking to see what the other end of the segment is -- we cannot operate on nodes, because we don't have the global node list, so we use NodeID.
*/
NodeID GetOtherEndpoint(const NodeID &id) const {
if (mEndpoints[0] == id) return mEndpoints[1];
return mEndpoints[0];
}
/*!
Accessor
*/
const NodeID &GetEndpoint(int num) const{
return mEndpoints[num];
}
/*!
Accessor -- not needed?
*/
bool operator == (const Neighbor&other) const {
return mEndpoints[0] == other.mEndpoints[0];
}
/*!
for sorting
*/
bool operator <(const Neighbor&other) const {
return mEndpoints[0] < other.mEndpoints[0] ||
mEndpoints[0] == other.mEndpoints[0] &&
mEndpoints[1] < other.mEndpoints[1];
}
/*!
conversion of Neighbor to string
*/
virtual std::string Stringify(void) const {
return std::string("Neighbor: endpoints = (") +
mEndpoints[0].Stringify() + string(", ") + mEndpoints[1].Stringify() + string(")");
}
protected:
/*!
\brief mEndpoints[0] < mEndpoints[1];
We use NodeIDs here, although they are more memory than a Node pointer, to allow us to create a new neighbor relation as soon as we see it, even if the node on the other end doesn't exist at the moment.
*/
NodeID mEndpoints[2];
}; /* end Neighbor */
//=============================================
/*!
Minimal Nodes are just enough information to learn what nodes we really need to load into memory. We have to load all nodes into memory at launch, under my current scheme. This is avoidable if I rewrite the dump file in sorted binary format with an index. But that was too much trouble and can always be done later. LOL
*/
class MinimalNode: public Node {
public:
MinimalNode()
: mKeep(false) { }
MinimalNode(const NodeID &id)
: Node(id), mKeep(false) {}
/*!
Accessor function -- returns whether the node was marked "Keep" earlier
*/
bool GetKeep(void) const {
return mKeep;
}
/*!
Accessor function -- mark node to keep (or not) later when culling
*/
void SetKeep(bool tf=true) {
mKeep = tf;
}
/*!
Accessor
*/
uint32_t GetFileOrderIndex(void) const { return mFileOrderIndex; }
/*!
Accessor
*/
void SetFileOrderIndex(uint32_t index) { mFileOrderIndex = index; }
/*!
For sorting by file order
*/
bool ComesBeforeInFile(const MinimalNode &other) const {
return mFileOrderIndex < other.GetFileOrderIndex();
}
/*!
Convert of MinimalNode to string
*/
virtual std::string Stringify(bool showneighbors=false) const {
std::string s =std::string("MinimalNode: ")+Node::Stringify() + string("\nClassification: ") + string(mKeep?"KEEP":"DON'T KEEP") + string("\n");
s += (intToString(mNeighbors.size()) + " neighbors --------------:\n");
uint32_t n = 0;
if (showneighbors) {
while (n < mNeighbors.size()) {
s += "neighbor " + intToString(n) + ": ";
if (mNeighbors[n]) {
s += mNeighbors[n]->Stringify() + "\n";
} else {
s += "(NULL)\n";
}
++n;
}
}
return s;
}
/*!
Accessor function
*/
int GetNumNeighbors(void) const { return mNeighbors.size(); }
/*!
Accessor function -- returns const due to the fact that neighbors are stored in a set in the data set. But you can always create a copy of what you get, or use const_cast<> on it.
*/
const Neighbor *GetNeighbor(uint32_t num) const {
if (num >= mNeighbors.size())
throw std::string("subscript out of range in BaseNode::GtNeighbor");
return mNeighbors[num];
}
/*!
Accessor function
*/
const std::vector<const Neighbor *> &GetNeighbors(void) const {
return mNeighbors;
}
/*!
Accessor function
*/
void AddNeighbor (const Neighbor *n) {
mNeighbors.push_back(n);
}
private:
/*!
if mKeep is false, full node info is not needed for any reason
*/
bool mKeep ;
/*!
Nodes must be sorted to find while classifying, then resorted in "file order" to most quickly load the full nodes later. So we keep an index into the file.
*/
uint32_t mFileOrderIndex;
/*!
The neighbors for this particular node
*/
std::vector<const Neighbor*> mNeighbors;
};
//=============================================
class ArmSegment; //forward declaration
/*!
A FullNode is a Node and has extra information as well.
*/
class FullNode: public Node {
public:
FullNode() : Node() {
init();
return;
}
FullNode(const FullNode &other, bool skipneighbors=false) {
*this = other;
if (skipneighbors) mNeighborSegments.clear();
return;
}
FullNode(int16_t domain, int32_t nodeID) {
init();
mID = NodeID(domain, nodeID);
}
void init(void) {
mInBounds = false;
float location[3] = {0,0,0};
SetLocation(location);
mNodeType = 0;
}
/*!
Full nodes are first copied from MinimalNodes. This is just a member-wise "shallow" copy.
*/
const FullNode &operator =(Node &otherNode) {
mID = otherNode.mID;
mInBounds = otherNode.mInBounds;
return *this;
}
/*!
Accessor function
*/
void SetInBounds(void) {
mInBounds = rclib::InBounds(rclib::Point<float>(mLocation), mBoundsMin, mBoundsMax );
}
/*!
Accessor function
*/
void SetLocation(float loc[3]) {
int i=3; while (i--) mLocation[i] = loc[i];
}
/*!
Accessor function
*/
float GetLocation(int index) { return mLocation[index]; }
/*!
Accessor function
*/
const float *GetLocation(void) {
return mLocation;
}
/*!
Accessor
*/
void GetLocation(float oLoc[3]) {
int i=3; while (i--) oLoc[i] = mLocation[i];
}
/*!
Special Accessor. Add the given amount to mLocation[index];
*/
void AddToLocation(int i, float shift){
mLocation[i] += shift;
}
/*!
Compute the distance to another node
*/
double Distance(const FullNode &other, bool wrap=false) {
double dist[3] = {0}, sum=0;
int i=3; while (i--) {
dist[i] = mLocation[i] - other.mLocation[i];
if (wrap && fabs(dist[i]) > mBoundsSize[i]/2.0) {
dist[i] = mBoundsSize[i] - fabs(dist[i]);
}
sum += dist[i]*dist[i];
}
return sqrt(sum);
/*
double dx = mLocation[0]-other.mLocation[0],
dy = mLocation[1]-other.mLocation[1],
dz = mLocation[2]-other.mLocation[2];
return sqrt(dx*dx + dy*dy + dz*dz);
*/
}
/*!
Accessor function.
\param itype If given, sets the type. If this is not given, then the node will attempt to determine its own type.
*/
void SetNodeType(int8_t itype=-1);
/*!
Accessor function
*/
int8_t GetNodeType(void) { return mNodeType; }
/*!
Query
*/
bool IsTypeM(void) {
return mNodeType < 0;
}
/*!
Convert FullNode to string
*/
virtual std::string Stringify(bool showneighbors=false) const;
/*!
Add the arm segment to our list of neighbors
*/
void AddNeighbor( ArmSegment *segment) {
mNeighborSegments.push_back(segment);
}
/*!
Replace a neighbor of this node with a new neighbor -- done when wrapping nodes
*/
void ReplaceNeighbor (ArmSegment *oldseg, ArmSegment *newseg) {
int segnum = mNeighborSegments.size();
while (segnum--) {
if (oldseg == mNeighborSegments[segnum]) {
mNeighborSegments[segnum] = newseg;
return;
}
}
throw string("Error: segment to replace is not a neighbor of this node\n");
}
/*!
Assuming we two neighbors or less, return the neighbor not passed to us
*/
ArmSegment *GetOtherNeighbor (const ArmSegment* n);
/*!
For each neighbor armsegment, ask it to confirm that we are one of its endpoints. Yet another piece of bookkeeping from wrapping nodes
*/
void ConfirmNeighbors(void) ;
/*!
Called by our neighbor segments destructors to make sure that no dangling pointers are kept as neighbors. Maintains the number of neighbors, but replaces the neighbor given with a NULL pointer.
*/
void NullifyNeighborReference(ArmSegment *seg) {
int num = mNeighborSegments.size();
while (num--) {
if (mNeighborSegments[num] == seg){
mNeighborSegments[num] = NULL;
return;
}
}
/*!
It's ok if the neighbor was not found -- the segment might have ghost neighbors
*/
return;
}
/*!
Accessor -- set the global bounds for every point
*/
static void SetBounds(rclib::Point<float> &min, rclib::Point<float> &max) {
mBoundsMin = min;
mBoundsMax = max;
mBoundsSize = max-min;
}
/*!
Accessor function
*/
int GetNumNeighbors(void) const { return mNeighborSegments.size(); }
/*!
Accessor function -- returns const due to the fact that neighbors are stored in a set in the data set. But you can always create a copy of what you get, or use const_cast<> on it.
*/
const ArmSegment *GetNeighbor(uint32_t num) const {
if (num >= mNeighborSegments.size())
throw std::string("subscript out of range in BaseNode::GtNeighbor");
return mNeighborSegments[num];
}
/*!
Accessor function
*/
const std::vector< ArmSegment *> &GetNeighbors(void) const {
return mNeighborSegments;
}
/*!
Accessor function
*/
int32_t GetIndex(void) { return mNodeIndex; }
/*!
Accessor
*/
void SetIndex(int32_t index) { mNodeIndex = index; }
//===============================================================
// PRIVATE
//===============================================================
private:
/*!
Absolute location in global space
*/
float mLocation[3];
/*!
Node Type is whether we are a butterfly, monster, or normal node (or a placeholder in a segment)
*/
int8_t mNodeType;
/*!
This is needed for things like Visit, where nodes are accessed by node ID, whereas this library uses pointers. Since it is also our index inthe global array of nodes, it turns out to be a good way to get the "real" counterpart of a wrapped node.
*/
int32_t mNodeIndex;
/*!
Connectivity to our neighboring nodes encapsulated in ArmSegments
*/
std::vector< ArmSegment *> mNeighborSegments;
/*!
Static member to keep track of subspace bounds for checking if we are in bounds or not
*/
static rclib::Point<float> mBoundsMin, mBoundsMax, mBoundsSize;
}; /* end FullNode */
//=============================================
// Segment BURGERS TYPES: (P = plus(+) and M = minus(-))
#define BURGERS_NONE 0
#define BURGERS_100 1
#define BURGERS_010 2
#define BURGERS_001 3
#define BURGERS_PPP 4 // +++
#define BURGERS_PPM 5 // ++-
#define BURGERS_PMP 6 // +-+
#define BURGERS_PMM 7 // +--
#define BURGERS_UNKNOWN 8
// Arm MN types:
#define ARM_UNKNOWN 0
#define ARM_UNINTERESTING 1
#define ARM_LOOP 2
#define ARM_MM_111 3
#define ARM_MN_111 4
#define ARM_NN_111 5
#define ARM_MM_100 6
#define ARM_MN_100 7
#define ARM_NN_100 8
#define ARM_SHORT_NN_111 9
#define ARM_SHORT_NN_100 10
/*!
Arm segments are like Neighbors in that they contain neighbor relationships, but these are encoded as pointers to nodes instead of NodeIDs, for faster access to complete node data as needed. They also contain burgers and arm-type information for later analysis. I almost called them "FullNeighbor", but in common terminology they are called "arm segments," since one or more of them comprise an Arm, so I just called them that.
*/
class ArmSegment {
public:
ArmSegment():mBurgersType(0), mMNType(ARM_UNKNOWN), mSeen(false)
#if LINKED_LOOPS
, mParentArm(NULL)
#endif
{ init(); }
ArmSegment(const ArmSegment &other){
init();
*this = other;
}
void init(void) {
mBurgersType = 0;
mSeen = false;
int i=2; while (i--) {
mEndpoints[i] = NULL;
}
mGhostEndpoints.clear();
#ifdef DEBUG
mSegmentID = -1;
mWrapped = false;
#endif
}
/*!
Destructor
*/
~ArmSegment() {
int nodenum=2;
while (nodenum--) {
FullNode *epnode = mEndpoints[nodenum];
if (epnode && epnode->GetNodeType() == PLACEHOLDER_NODE) {
delete epnode;
epnode = NULL;
}
if (epnode != NULL) {
epnode->NullifyNeighborReference(this);
}
}
nodenum = mGhostEndpoints.size();
while (nodenum--) {
mGhostEndpoints[nodenum]->NullifyNeighborReference(this);
}
return;
}/* end destructor */
/*!
operator <() is required for set ordering. All it requires is it be consistent, so we'll just see if our first node is less than the other's first node, if so, then yay, else if it is equal, then check the other endpoint. Otherwise, it's false. Pretty standard stuff. Important thing is this is all done by ID, not by pointer values.
*/
bool operator < (const ArmSegment &other) const {
return (*mEndpoints[0] < *other.mEndpoints[0] ||
( *mEndpoints[0] == *other.mEndpoints[0] &&
*mEndpoints[1] < *other.mEndpoints[1]));
}
/*!
operator ==() is required for set ordering. It tests equality of endpoints, which is done by NodeID, not by location.
*/
bool operator == (const ArmSegment &other) const {
return
(*mEndpoints[0] == *other.mEndpoints[0] && *mEndpoints[1] == *other.mEndpoints[1]) ||
(*mEndpoints[0] == *other.mEndpoints[1] && *mEndpoints[1] == *other.mEndpoints[0]);
}
/*!
inequality
*/
bool operator != (const ArmSegment &other) const {
return !(*this == other);
}
/*!
For each wrapped segment, there is an identical unwrapped segment with the same node ID's. One of each such pair of segments has a ghost endpoint with ID greater than one of its nodes and equal to the other, and one has a ghost endpoint with ID less than one of its nodes and equal to the other. This function returns true for one of them and not the other. Used in counting total segment lengths.
*/
bool Cullable(void) {
if (mGhostEndpoints.size() > 1) {
throw string("Error: I don't know how there can be more than one ghost endpoint for any segment");
}
if (!mGhostEndpoints.size()) return false;
return (*(mGhostEndpoints[0]) < *(mEndpoints[0]) ||
*(mGhostEndpoints[0]) < *(mEndpoints[1]));
}
int8_t GetBurgersType(void) const { return mBurgersType; }
/*!
Accessors for MN type values (set by parent arm)
*/
int8_t GetMNType(void) const { return mMNType; }
void SetMNType(int8_t val) { mMNType=val; }
/*!
Return the distance between the endpoints
*/
double GetLength(bool wrap=false) const {
return mEndpoints[0]->Distance(*mEndpoints[1], wrap);
}
/*!
Accessor function
*/
int32_t GetNodeIndex(int num) {
return mEndpoints[num]->GetIndex();
}
/*!
Set the segment id to the next available global ID
*/
void SetID(void) {
#ifdef DEBUG
mSegmentID = mNextID++;
#endif
return;
}
/*!
accessor -- noop if not debug mode
*/
int32_t GetID(void) {
#ifdef DEBUG
return mSegmentID;
#else
return -1;
#endif
}
/*!
Accessor function
*/
void GetNodeIndices(uint32_t indices[2]) {
indices[0] = mEndpoints[0]->GetIndex();
indices[1] = mEndpoints[1]->GetIndex();
}
/*!
Accessor function
*/
bool Seen(void) const { return mSeen; }
/*!
Accessor function
*/
void SetSeen(bool tf) {mSeen = tf; }
/*!
convert ArmSegment to string
*/
std::string Stringify(void) const {
string s(string("ArmSegment at ") + pointerToString(this) +
#ifdef DEBUG
" number " + intToString(mSegmentID) +
#endif
": \nBurgersType: " + intToString(mBurgersType)+", length: "+doubleToString(GetLength())+"\n");
uint32_t epnum = 0; while (epnum < 2) {
s+= "ep "+intToString(epnum)+": ";
if (mEndpoints[epnum]) s+= mEndpoints[epnum]->Stringify();
else s+= "(NULL)";
epnum++;
}
epnum = 0; while (epnum < mGhostEndpoints.size()) {
s+= "GHOST ep "+intToString(epnum)+": ";
if (mGhostEndpoints[epnum]) {
s+=mGhostEndpoints[epnum]->Stringify();
} else {
s += "(NULL)";
}
++epnum;
}
return s;
}
/*!
Given the float values for the burgers vector from the data set, set the burgers type for the arm segment
*/
void ComputeBurgersType(float burg[3]);
/*!
SetEndpoint -- given an actual new FullNode and ID information for an as-yet uncreated neighborNode, we set the endpoints to be the address of the actualNode and the address of an internal placeholder, a copy of neighborNode. We will delete the placeholder FullNode later, either when the actual FullNode is created, or when our destructor is called.
*/
void SetEndpoints(FullNode *actualNode, int16_t neighborDomain, int32_t neighborNodeID) {
FullNode *placeholder = new FullNode(neighborDomain, neighborNodeID);
placeholder->SetNodeType(PLACEHOLDER_NODE); //mark as a dummy node;
placeholder->SetIndex(-42);
SetEndpoints_internal(actualNode, placeholder);
return ;
}
/*!
Called by a node as part of bookkeeping when wrapping a segment. Make sure the given node is one of our endpoints -- add it as a ghost if not
*/
void ConfirmEndpoint(FullNode *ep) {
if (mEndpoints[0] == ep || mEndpoints[1] == ep) return ;
int epnum = mGhostEndpoints.size();
while (epnum --) {
if (mGhostEndpoints[epnum] == ep) return;
}
mGhostEndpoints.push_back(ep);
}
/*!
We are setting the placeholder endpoint of the segment to be an actual node in memory. This requires that SetEndpoints() was called previously, resulting in the creation of a placeholder node.
*/
void ReplacePlaceholder(FullNode *actualNode) {
int epnum=2; while (epnum--) {
if (mEndpoints[epnum]->GetNodeType() == PLACEHOLDER_NODE) {
if (!(*actualNode == *mEndpoints[epnum])){
throw string("Error in SetActualEndpoint: placeholder node does not match replacement.");
}
dbprintf(5, "ReplacePlaceholder in segment %s replacing ep with actualNode %s\n", this->Stringify().c_str(), actualNode->Stringify().c_str());
delete mEndpoints[epnum];
mEndpoints[epnum] = actualNode;
return;
}
}
throw string("Error in SetActualEndpoint: There is no placeholder to replace. Segment is ")+this->Stringify() + " and actualNode at "+pointerToString(actualNode)+" is " + actualNode->Stringify();
return; // ha ha
}
/*!
This is called only for wrapped segments, when you need to replace a "real" node pointer with a pointer to a wrapped node. We still need to keep the old pointer to the real node to notify it if we are deleted.
*/
void ReplaceEndpoint(FullNode *oldEP, FullNode *newEP) {
if (mEndpoints[0] == oldEP) {
mGhostEndpoints.push_back(mEndpoints[0]);
mEndpoints[0] = newEP;
} else if (mEndpoints[1] == oldEP) {
mGhostEndpoints.push_back(mEndpoints[1]);
mEndpoints[1] = newEP;
} else {
throw string("Error in ReplaceEndpoint -- there is no such endpoint");
}
return;
}
/*!
Just immediately returns true if a useless endpoint is in mEndpoints, which means this segment itself is useless!
If not, then goes through and removes all the leftover crappy useless endpoints from our ghost endpoints, since they will just be deleted and become dangling references anyhow. The returns false.
*/
bool IsUseless(void) const {
// I don't remember why we consider any nodes useless.. Let's keep everything.
return false;
if( mEndpoints[0]->GetNodeType() == USELESS_NODE ||
mEndpoints[1]->GetNodeType() == USELESS_NODE ||
(!mEndpoints[0]->InBounds() && ! mEndpoints[1]->InBounds())) {
return true;
}
vector<FullNode*>::iterator nodepos =
remove_if(const_cast<ArmSegment*>(this)->mGhostEndpoints.begin(), const_cast<ArmSegment*>(this)->mGhostEndpoints.end(), NodeIsUseless);
const_cast<ArmSegment*>(this)->mGhostEndpoints.erase(nodepos, const_cast<ArmSegment*>(this)->mGhostEndpoints.end());
return false;
}
/*!
Given the size of the periodic bounds of the data, determine if the nodes are closer if you wrap one of them. If not, just return false and set oNewSegment to NULL.
It will be true if the segment crosses any face of the periodic data bounds. If the segment crosses one face, it must also cross a second. So if there is a crossing, create two new nodes, representing the node reflected so as to represent the closest neighbor in all bounding data periods. Match endpoint[1] of (*this) with the nearest of these new nodes and create a new segment containing our old endpoint[1] and its new neighbor node. Replace endpoint[1] in (*this) with the other node. Return true and set oNewSegment to point to the new segment.
These new wrapped nodes will be the same as their "real" counterparts, but have a negative nodeID, and of course a different location from wrapping, and one of their neighbor segments may be different. The new segment will simply have a pointer to a real node and a pointer to a wrapped node. This difference only affects BuildArms and where it is important to traverse an entire arm. In those cases, when a wrapped node is seen, its equivalent can be gotten by referencing mFullNodes(wrappedNode->GetIndex());
*/
bool Wrap(const rclib::Point<float> &dataSize, ArmSegment *&oNewSegment,
FullNode *&oWrapped0, FullNode *&oWrapped1);
/*!
Accessor function.
\param epnum Must be 0 or 1
*/
FullNode *GetEndpoint(int epnum) const { return mEndpoints[epnum]; }
/*!
Common Accessor operation: we have one node ID, but we're looking to see what the other end of the segment is -- we cannot operate on nodes, because we don't have the global node list, so we use NodeID.
*/
FullNode *GetOtherEndpoint(const FullNode *node) const {
if (*mEndpoints[0] == *node)
return mEndpoints[1];
else if (*mEndpoints[1] == *node)
return mEndpoints[0];
throw string("Error in GetOtherEndpoint: cannot find node corresponding to ")+node->Stringify();
}
#ifdef DEBUG
/*!
purely for debugging
*/
int32_t mSegmentID;
/*!
Used by SetID() to determine the next available segment ID:
*/
static int32_t mNextID;
/*!
to find out if wrapped
*/
bool mWrapped;
#endif
protected:
/*!
Store the given nodes as endpoints, properly ordered to allow searching in sets and hashes.
*/
void SetEndpoints_internal(FullNode *node1, FullNode *node2) {
if (*node1 < *node2) {
mEndpoints[0] = node1;
mEndpoints[1] = node2;
} else if (*node2 < *node1) {
mEndpoints[1] = node1;
mEndpoints[0] = node2;
} else {
throw string("Error in SetEndpoints -- endpoints are identical!");
}
return;
}
int Category(float num) {
if (!num)
return 0;
else if (fabs(fabs(num) - 1.15) < 0.01 || fabs(fabs(num) - 1.00) < 0.01)
return 1;
else if (fabs(num - 0.577) < 0.001 || fabs(num - 0.500) < 0.001)
return 2;
else if (fabs(num + 0.577) < 0.001 || fabs(num + 0.500) < 0.001)
return 3;
dbprintf(2, "\n\n********************************\n");
dbprintf(2, "WARNING: Weird value %g encountered in Category\n", num);
dbprintf(2, "\n********************************\n\n");
return 4;
}
/*!
The burgers-type is as follows (A 1 means a value +/-1.14, a + means +0.577 and - means -0.577):
1 = "1 0 0"
2 = "0 1 0"
3 = "0 0 1"
4 = "+ + +" or "- - -"
5 = "+ + -" or "- - +"
6 = "+ - +" or "- + -"
7 = "- + +" or "+ - -"
8 = none of the above
*/
int8_t mBurgersType;
/*!
The MN_type of the segment is set by its parent arm. See Arm struct for definitions, but it describes whether the segment is 100 or 111 and whether its parent arm has any monsters at either end.
*/
int8_t mMNType;
/*!
Marker used for "once-through" operations like building arms that must look at every segment, but which will usually discover echo particular segment more than once.
*/
bool mSeen;
/*!
Pointers to actual nodes, as opposed to just NodeID's as in Neighbors.
*/
FullNode * mEndpoints[2];
public:
#if LINKED_LOOPS
/*!
Back reference to parent Arm, needed for discovering linked loops.
Note forward declaration of struct Arm.
*/
struct Arm *mParentArm;
#endif
/*!
We usually need two slots for endpoints, but may need extra slots for "ghost endpoints" created when nodes are wrapped. When this segment is deleted, it goes through its endpoints and tells all of them they are gone. But wrapping causes some segments to be the neighbor of 3 or even (very rarely) more nodes. So we need to track those special cases.
*/
std::vector<FullNode*>mGhostEndpoints;
}; /* end ArmSegment */
// ==============================================
/*!
A wrapper class to enable me to store ArmSegment *'s. If I just use pointers, it does not work properly with operator ==() in that it compares the pointers for equality, which is not what I want. Using this class allows me to overload operator ==() so that the pointers are dereferenced before they are compared. I also provide unary operator *() for convenience of notation.
*/
class ArmSegmentSetElement {
public:
ArmSegmentSetElement(ArmSegment *segment) {
mSegment = segment;
}
bool operator == (const ArmSegmentSetElement &other) const {
return ***this == **other;
}
ArmSegment *operator *() const {
return mSegment;
}
private:
ArmSegment *mSegment;
};
//=============================================
/*!
This is a unary function object to be used with the hash in the DataSet. operator () must return a size_t...
*/
class ArmSegmentHash {
public:
ArmSegmentHash() {
mDenominator = 1 << (8*sizeof(size_t)/2 - 2) ;
}
size_t operator () (const ArmSegmentSetElement &segment) const {
NodeID id0 = (*segment)->GetEndpoint(0)->GetNodeID(),
id1 = (*segment)->GetEndpoint(1)->GetNodeID();
return 1000*(id0.GetDomainID() + id1.GetDomainID()) + id0.GetNodeID() + id1.GetNodeID();
}
private:
uint32_t mDenominator;
};
typedef vector<FullNode*>::iterator FullNodeIterator;
//==============================================
/*!
Arms are conceptually a list of segments, but all we need to store is the two (or one, for a cycle) terminal ArmSegments for the arm, and the two (or one) terminal Nodes. This allows us to recreate the arm for drawing or analysis, but saves lots of memory. (Tradeoff of speed to get memory). The assumption is that traversing the arm will be fast enough and not done very often. If it starts using lots of time, we can always store more information if it makes it faster later.
Arms are used just for classifying nodes and segments and are not expected to be useful to the user of this library;
*/
struct Arm {
Arm():mArmType(0), mArmLength(0)
#if LINKED_LOOPS
, mPartOfLinkedLoop(false), mCheckedForLinkedLoop(false)
#endif
{return; }
/*!
Clear all data from the Arm for reuse
*/
void Clear(void) {
mTerminalSegments.clear();
mTerminalNodes.clear();
mArmType = 0;
#ifdef DEBUG
mNumSegments = 0;
#endif
}
/*!
create a string out of the arm
*/
std::string Stringify(void) const ;
/*!
Give the exact Burgers type of its segments.
Return 0 is no terminal segments.
*/
int8_t GetBurgersType(void) {
if (!mTerminalSegments.size()) {
return 0;
}
return mTerminalSegments[0]->GetBurgersType();
}
/*!
to set the arm ID for debugging. In Debug code, this will do nothing
*/
void SetID(void) {
#ifdef DEBUG
mArmID = mNextID++;
#endif
return;
}
#if LINKED_LOOPS
/*!
After an arm has been pushed into the array, you need to set
up the back-pointers so you can find it from the terminal segments.
*/
void SetSegmentBackPointers(void) {
int numsegs = mTerminalSegments.size();
while (numsegs--) {
mTerminalSegments[numsegs]->mParentArm = this;
}
return;
}
/*!
A linked loop is defined as:
A) Two arms which have the same four-armed terminal nodes
OR
B) Three arms which all have the same three-armed terminal nodes.
*/
void CheckForLinkedLoops(void);
#endif
void ComputeLength(void);
/*!
Classify the arm as one of NN, MN or MM, combined with 100 or 111...
*/
void Classify(void) ;
/*!
If either terminal segment is useless,mark it as NULL and return true.
Else, return false.
*/
bool IsUseless(void) {
return false;
int segnum = mTerminalSegments.size();
bool useless = false;
while (segnum--) {
if (mTerminalSegments[segnum]->IsUseless()) {
useless = true;
mTerminalSegments[segnum] = NULL;
}
}
int nodenum = mTerminalNodes.size();
while (nodenum--) {
if (mTerminalNodes[nodenum]->GetNodeType() == USELESS_NODE) {
mTerminalNodes[nodenum] = NULL;
}
}
return false;
}
/*!
Return the sum of the length of all segments in the arm
*/
double GetLength(void) const {
return mArmLength;
}
/*!
Check to see if this is the body of a "butterfly," which is two three armed nodes connected by a type 100 arm, and which have four uniquely valued type 111 exterior arms ("exterior" means the arms not connecting the two). If so, mark each terminal node as -3 (normal butterfly. If one of the terminal nodes is a type -44 "special monster" node, then mark the other terminal node as being type -33 ("special butterfly").
*/
void CheckForButterfly(void);
/*!
This is a necessary component to CheckForButterfly, broken out for readability in the code.
*/
bool HaveFourUniqueType111ExternalArms(void);
vector < ArmSegment *> mTerminalSegments; // At least one, but not more than two
vector <FullNode *> mTerminalNodes; // At least one, but not more than two
int8_t mArmType;
double mArmLength;
static double mThreshold; // shorter than this and an arm is "short"
#if LINKED_LOOPS
bool mPartOfLinkedLoop, mCheckedForLinkedLoop;
#endif
#ifdef DEBUG
/*!
purely for debugging
*/
int32_t mArmID;
/*!
purely for debugging
*/
static int32_t mNextID;
/*!
statistics for debugging
*/
uint32_t mNumSegments;
#endif
};
//=============================================
/*!
Functor object for sorting the armsegment set by comparing pointers correctly (by dereferencing, not by pointer address)
*/
class CompareSegPtrs {
public:
bool operator() ( const ArmSegment *seg1, const ArmSegment *seg2) {
return *seg1 < *seg2;
}
};
typedef set<ArmSegment*, CompareSegPtrs> ArmSegmentSet;
/*!
The paraDIS data set. Note that all you really want is to read the data and return the segments and nodes. Identifying specific arms in a scene is not likely to be of interest, so arm information is kept internal.
*/
class DataSet {
public:
DataSet() { init(); }
/*!
if this is true, then complete dumps of all data are done,
into files named mDebugOutputPrefix + <type> + ".debug"
*/
void EnableDebugOutput(bool tf=true) {mDoDebugOutput = tf; }
/*!
By default, this is "./paradis-debug". See mDoDebugOutput.
*/
void SetDebugOutputDir(std::string dir) { mDebugOutputDir = dir; }
/*!
verbosity goes from 0-5, based on dbg_setverbose() from librc.a
filename if null means stderr
*/
void SetVerbosity(int level, const char *filename) {
if (filename) dbg_setfile(filename);
dbg_setverbose(level);
}
void SetThreshold(double threshold) {
mThreshold = threshold;
Arm::mThreshold = threshold;
return;
}
/*!
Print out arm statistics
*/
void PrintArmStats(void);
/*!
Parse the input file just for the data bounds.
*/
void GetBounds( rclib::Point<float> &outDataMin,
rclib::Point<float> &outDataMax,
std::string filename="") {
if (filename!="") {
mDataFilename = filename;
}
ReadBounds();
outDataMin = mDataMin;
outDataMax = mDataMax;
return;
}
/*!
For debugging, force the subspace max to be half the max of the bounds. E.g. if data max is (100,100,100), then this causes subspace max to be (50,50,50).
*/
void TestRestrictSubspace(void);
/*!
s Tell the data set which file to read
*/
void SetDataFile(std::string datafile) {
mDataFilename = datafile;
}
/*!
Using 3-way binary decomposition, determine our chunk of subspace based on our processor number
*/
void ComputeSubspace(void);
/*!
For parallel processing, tell dataset which procnum we are.
If this is set, then the data set will use a certain subspace of the data based on a decomposition in space
*/
void SetProcNum(int procnum, int numprocs) {
mProcNum = procnum;
mNumProcs = numprocs;
}
/*!
Accessor -- procnum (0 based) for parallelism
*/
int GetProcNum(void) { return mProcNum; }
/*!
Accessor -- number of procs in parallel
*/
int GetNumProcs(void) { return mNumProcs; }
/*!
Parse the paradis data file and create a full set of arms and nodes
*/
void ReadData(std::string datafile="");
/*!
Accessor function.
*/
uint32_t GetNumNodes(void) { return mFullNodes.size(); }
/*!
Accessor returns begin of node vector.
*/
vector<FullNode *>::const_iterator GetNodesBegin(void) {
return mFullNodes.begin();
}
/*!
Accessor returns end of node vector.
*/
vector<FullNode *>::const_iterator GetNodesEnd(void) {
return mFullNodes.end();
}
/*!
Accessor function.
*/
FullNode * GetNode(uint32_t nodenum) { return mFullNodes[nodenum]; }
/*!
Accessor function.
*/
uint32_t GetNumArmSegments(void) const { return mFinalArmSegments.size(); }
/*!
Accessor returns begin of arm vector.
*/
vector<ArmSegment *>::const_iterator GetArmSegmentsBegin(void) {
return mFinalArmSegments.begin();
}
/*!
Accessor returns end of arm vector.
*/
vector<ArmSegment *>::const_iterator GetArmSegmentsEnd(void) {
return mFinalArmSegments.end();
}
/*!
Accessor function
*/
ArmSegment *GetArmSegment(uint32_t segnum) {
return mFinalArmSegments[segnum];
}
/*!
Set the bounds for our chunk of space
*/
void SetSubspace(const rclib::Point<float> &min, const rclib::Point<float> &max){
if (min.Exceeds(max)) {
throw std::string("Error in DataSet::SetSubspace: A value in min vector exceeds max");
}
mSubspaceMin = min; mSubspaceMax = max;
return;
}
/*!
Free up all memory and go back to virgin state.
*/
void Clear(void) {
init();
}
//=======================================================================
// PRIVATE
//======================================================================
private:
/*!
Initialize things to virginal values.
*/
void init(void) {
mThreshold = -1.0;
mFileVersion = 0;
mMinimalNodes.clear();
mMinimalNeighbors.clear();
vector<FullNode *>::iterator nodepos = mFullNodes.begin(), nodeend = mFullNodes.end();
while (nodepos != nodeend) delete *nodepos++;
mFullNodes.clear();
nodepos = mWrappedNodes.begin(), nodeend = mWrappedNodes.end();
while (nodepos != nodeend) delete *nodepos++;
mWrappedNodes.clear();
vector<ArmSegment *>::iterator pos = mFinalArmSegments.begin(), endpos = mFinalArmSegments.end();
while (pos != endpos) delete *(pos++); //delete internal pointers.
mFinalArmSegments.clear();
pos = mWrappedArmSegments.begin();
while (pos != mWrappedArmSegments.end()) delete *(pos++);
set<ArmSegment*, CompareSegPtrs>::iterator spos = mQuickFindArmSegments.begin(), send = mQuickFindArmSegments.end();
while (spos != send) delete *(spos++);
mQuickFindArmSegments.clear();
/*ArmSegmentSet::iterator qfpos = mQuickFindArmSegments.begin(), qfendpos = mQuickFindArmSegments.end();
while (qfpos != qfendpos) delete **(qfpos++);
mQuickFindArmSegments.clear();
*/
mArms.clear();
mProcNum = mNumProcs = mFileVersion = 0;
mTotalDumpNodes =0;
mDoDebugOutput=false;
mDebugOutputDir = "./paradis-debug";
mDataMin = mDataMax = mDataSize = mSubspaceMin = mSubspaceMax =
rclib::Point<float>(0.0);
}
/*!
Parse the input file just for the data bounds.
*/
void ReadBounds(void);
/*!
make a directory or return false. prints error if fails
*/
bool Mkdir(const char *);
/*!
Very chatty output of all minimal nodes, with neighbor info
*/
void DebugPrintMinimalNodes(void);
/*!
Prints out all full nodes
*/
void DebugPrintFullNodes(const char *name = NULL);
/*!
Prints out all arms
*/
void DebugPrintArms(void);
/*!
Read a node and its neighbors from a file. This has to be done in DataSet because we avoid duplicate neighbor structs by using pointers into a global neighbor array.
*/
void ReadMinimalNodeFromFile(uint32_t &lineno, std::ifstream &datafile);
/*!
Make a first pass through the file: load all as MinimalNodes, with minimal info: {domain and ID, whether out of bounds, neighbor IDs}
*/
void CreateMinimalNodes(void);
/*!
Mark all nodes as one of three possible MinimalNode::NodeTypes:
A) NoInfo -- Full information needed (FullNodes) (in bounds or direct neighbor to in bounds or terminal OOB node which terminates a collapsible chain of OOB interior segments).
B) PartialInfo -- Partial information needed (PartialNodes) (need just position and neighbor info to compute the length of a collapsible chain of OOB interior segments)
C) NoInfo -- Not needed (none of the above applies)
*/
void ClassifyMinimalNodes(void);
/*!
Given a node, return pointers to all its neighbor nodes, as found by looking in whichNodes to see which have matching ID's to the inode's neighbors.
*/
std::vector<MinimalNode *> GetNeighborMinimalNodes(const MinimalNode &inode);
/*!
Called from ClassifyMinimalNodes, this is used to identify a string of OOB nodes connected to an IB node and find the other end. Interior nodes are marked Partial, and the terminal node is marked Full, whether it's IB or an OOB terminal.
*/
void MarkOOBNodeChain( MinimalNode &node, MinimalNode &previous);
/*!
Used for culling nodes from mMinimalNodes, using STL
*/
void CullAndResortMinimalNodes(void);
/*!
Create FullNodes and ArmSegments, using the information contained in the minimal nodes and neighbors discovered. Work backwards through the MinimalNodes and release them as FullNodes are created. Create the ArmSegments as you go. When a segment is first created, one of the nodes it points to will be a dummy placeholder FullNode. The second time it is seen, the dummy will be replaced by the actual FullNode. See ArmSegment::SetEndpoints() for implementation details.
*/
void CreateFullNodesAndArmSegments(void);
/*!
Read the data file until we find the node specified in theNode. Create a FullNode from the information in the file. Find each Neighbor as it is seen and create and its neighbors from a file. This has to be done in DataSet because we avoid duplicate neighbor structs by using pointers into a global neighbor array.
*/
void ReadFullNodeFromFile(std::ifstream &datafile, MinimalNode &theNode);
/*!
Some segments connect a node at one edge of the subspace to a node outside the subspace. I think these are ok to draw as-is. But some segments connect a node to a node on the other side ("wrapped" segment). For a "wrapped" segment, create two new "wrapped" nodes outside the subspace boundary. Connect each end of the segment to the appropriate wrapped node. This requires a new segment as well.
*/
void WrapBoundarySegments(void);
/*!
Create all arms for our region. This function is a bit long because we are avoiding recursion by using loops. Recursion for these arms would get pretty deep.
IN THE FUTURE, to save memory, we will implement the following:
Segments that connect two PartialNodes are PartialSegments. Segments that connect two OOB FullNodes are CollapsedSegments. Segments that connect an IB FullNode to another node are FullSegments. Only FullSegments are drawn.
HOWEVER, For the first implementation, we will not distinguish between Partial and Full Segments, and we will not even collapse arms, so that we can get a good view of what things are like. After it is clear that we are making sensible things, we can collapse arms to save memory.
*/
void BuildArms();
/*!
Starting at the given first node and heading out in the direction of the given first segment in an arm, trace along the arm until you find its other endpoint (terminal segment and node). When wrapped nodes are found, use their real counterparts instead.
This will be where we actually discriminate between node types, etc. But as mentioned for BuildArms, we don't do that yet.
*/
void FindEndOfArm(FullNodeIterator &firstNode, FullNode **oFoundEndNode,
ArmSegment *firstSegment, ArmSegment *&foundEndSegment
#ifdef DEBUG
, Arm &theArm
#endif
);
/*!
Classify arms and nodes as butterflies
*/
void FindButterflies(void);
/*!
Make another run through the arms now that we know all the butterflies, and put the final classification on them as ARM_XX_YYY.
*/
void ClassifyArms(void);
void ComputeArmLengths(void);
/*!
Identify all useless nodes, which are out of bounds and have no in-bounds neighbors. Then delete all segments connecting two useless nodes. Finally, delete all useless nodes.
*/
void DeleteUselessNodesAndSegments(void);
/*!
Go through and renumber the nodes so that their index is the same as their position in the vector
*/
void RenumberNodes(void);
/*!
Extents of the full data set:
*/
rclib::Point<float> mDataMin, mDataMax, mDataSize;
/*!
Subspace of interest:
*/
rclib::Point<float> mSubspaceMin, mSubspaceMax;
/*!
can modify but must sort and insert/delete are slow
*/
std::vector<MinimalNode> mMinimalNodes;
/*!
cannot modify but always sorted so fast
*/
std::set<Neighbor> mMinimalNeighbors;
/*!
all fullnodes in the data set. DO NOT SORT THIS -- each node has an Index which is its position in this array when created -- used to find its counterpart in the wrapped nodes for tracing along arms to find their endpoints and lengths.
*/
std::vector<FullNode *> mFullNodes;
/*!
Use a set of node pointers to know what to delete. This complication is because it looks like remove_copy_if() is broken in g++ 3.2.3
*/
std::vector<FullNode *>mUselessNodes;
/*!
to avoid memory leaks, track all these in one place
*/
std::vector<FullNode *> mWrappedNodes;
/*!
set: always sorted so fast, but in order to modify, must remove an element, modify it, and reinsert it... or use const_cast<>
*/
set<ArmSegment *, CompareSegPtrs> mQuickFindArmSegments;
/*!
The QuickFind array does not allow duplicates, so put wrapped arm segments here
*/
std::vector<ArmSegment *> mWrappedArmSegments;
/*!
The actual final arm segments to hand out
*/
std::vector<ArmSegment *> mFinalArmSegments;
/*!
This is useless to the user, only used for classification
*/
std::vector<Arm> mArms;
/*!
Number of nodes in full dump data
*/
uint32_t mTotalDumpNodes;
/*!
if this is true, then complete dumps of all data are done,
into files named mDebugOutputPrefix + <type> + ".debug"
*/
bool mDoDebugOutput;
/*!
By default, this is "./paradis-debug". See mDoDebugOutput.
*/
std::string mDebugOutputDir;
/*!
The name of the data file that will be read.
*/
std::string mDataFilename;
/*!
If set, then the file to be read is "old school" paraDIS data, of a slightly different format. If there is a dataFileVersion string, then mFileVersion will reflect that. Otherwise:
0 == "old style" -- probably not needed any more
1 == "new style" -- before versioning was done
*/
unsigned long mFileVersion;
/*!
processor number for parallelism.
*/
int mProcNum;
/*!
number of processors for parallelism. If zero or one, then serial.
*/
int mNumProcs;
/*!
A hack to get at some interesting linked loops for Moono Rhee.
If an arm is less than a certain length, then he assumes
it is part of a particular loop configuration I call a "linked loop."
*/
double mThreshold;
};
} //end namespace paraDIS
#endif /* defined PARADIS_H */
|