1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkImageMirrorPad.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkImageMirrorPad.h"
#include "vtkImageData.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkStreamingDemandDrivenPipeline.h"
vtkStandardNewMacro(vtkImageMirrorPad);
//----------------------------------------------------------------------------
// Just clip the request.
void vtkImageMirrorPad::ComputeInputUpdateExtent(int inExt[6],
int outExt[6],
int wExtent[6])
{
int idx;
// initialize inExt
memcpy(inExt,wExtent,6*sizeof(int));
// a simple approximation to the required extent
// basically get the whole extent for an axis unless a fully
// contained subset is being requested. If so then use that.
for (idx = 0; idx < 3; idx++)
{
if (outExt[idx*2] >= wExtent[idx*2] &&
outExt[idx*2+1] <= wExtent[idx*2+1])
{
inExt[idx*2] = outExt[idx*2];
inExt[idx*2+1] = outExt[idx*2+1];
}
}
}
//----------------------------------------------------------------------------
template <class T>
void vtkImageMirrorPadExecute(vtkImageMirrorPad *self,
vtkImageData *inData,
int *wExtent,
vtkImageData *outData, T *outPtr,
int outExt[6], int id)
{
int idxC, idxX, idxY, idxZ;
int maxX, maxY, maxZ;
vtkIdType inInc[3];
int inIncStart[3];
vtkIdType inIncX, inIncY, inIncZ;
vtkIdType outIncX, outIncY, outIncZ;
unsigned long count = 0;
unsigned long target;
int idx;
int inIdxStart[3];
int inIdx[3];
T *inPtr, *inPtrX, *inPtrY, *inPtrZ;
int maxC, inMaxC;
// find the region to loop over
inMaxC = inData->GetNumberOfScalarComponents();
maxC = outData->GetNumberOfScalarComponents();
maxX = outExt[1] - outExt[0];
maxY = outExt[3] - outExt[2];
maxZ = outExt[5] - outExt[4];
target = static_cast<unsigned long>((maxZ+1)*(maxY+1)/50.0);
target++;
// Get increments to march through data
inData->GetIncrements(inIncX, inIncY, inIncZ);
outData->GetContinuousIncrements(outExt, outIncX, outIncY, outIncZ);
// find the starting point
for (idx = 0; idx < 3; idx++)
{
inIdxStart[idx] = outExt[idx*2];
inIncStart[idx] = 1;
while (inIdxStart[idx] < wExtent[idx*2])
{
inIncStart[idx] = -inIncStart[idx];
inIdxStart[idx] = inIdxStart[idx] + (wExtent[idx*2+1] - wExtent[idx*2] + 1);
}
while (inIdxStart[idx] > wExtent[idx*2+1])
{
inIncStart[idx] = -inIncStart[idx];
inIdxStart[idx] = inIdxStart[idx] - (wExtent[idx*2+1] - wExtent[idx*2] + 1);
}
// if we are heading negative then we need to mirror the offset
if (inIncStart[idx] < 0)
{
inIdxStart[idx] = wExtent[idx*2+1] - inIdxStart[idx] + wExtent[idx*2];
}
}
inPtr = static_cast<T *>(inData->GetScalarPointer(inIdxStart[0], inIdxStart[1], inIdxStart[2]));
// Loop through ouput pixels
inPtrZ = inPtr;
inIdx[2] = inIdxStart[2];
inInc[2] = inIncStart[2];
for (idxZ = 0; idxZ <= maxZ; idxZ++)
{
inPtrY = inPtrZ;
inIdx[1] = inIdxStart[1];
inInc[1] = inIncStart[1];
for (idxY = 0; !self->AbortExecute && idxY <= maxY; idxY++)
{
inPtrX = inPtrY;
inIdx[0] = inIdxStart[0];
inInc[0] = inIncStart[0];
if (!id)
{
if (!(count%target))
{
self->UpdateProgress(count/(50.0*target));
}
count++;
}
// if components are same much faster
if ((maxC == inMaxC) && (maxC == 1))
{
for (idxX = 0; idxX <= maxX; idxX++)
{
// Pixel operation
*outPtr = *inPtrX;
outPtr++;
inIdx[0] += inInc[0];
inPtrX = inPtrX + inInc[0]*inIncX;
if (inIdx[0] < wExtent[0] || inIdx[0] > wExtent[1])
{
inInc[0] *= -1;
inIdx[0] += inInc[0];
inPtrX = inPtrX + inInc[0]*inIncX;
}
}
}
else // components are not the same
{
for (idxX = 0; idxX <= maxX; idxX++)
{
for (idxC = 0; idxC < maxC; idxC++)
{
// Pixel operation
if (idxC < inMaxC)
{
*outPtr = *(inPtrX + idxC);
}
else
{
*outPtr = *(inPtrX + idxC%inMaxC);
}
outPtr++;
}
inIdx[0] += inInc[0];
inPtrX = inPtrX + inInc[0]*inIncX;
if (inIdx[0] < wExtent[0] || inIdx[0] > wExtent[1])
{
inInc[0] *= -1;
inIdx[0] += inInc[0];
inPtrX = inPtrX + inInc[0]*inIncX;
}
}
}
outPtr += outIncY;
inIdx[1] += inInc[1];
inPtrY = inPtrY + inInc[1]*inIncY;
if (inIdx[1] < wExtent[2] || inIdx[1] > wExtent[3])
{
inInc[1] *= -1;
inIdx[1] += inInc[1];
inPtrY = inPtrY + inInc[1]*inIncY;
}
}
outPtr += outIncZ;
inIdx[2] += inInc[2];
inPtrZ = inPtrZ + inInc[2]*inIncZ;
if (inIdx[2] < wExtent[4] || inIdx[2] > wExtent[5])
{
inInc[2] *= -1;
inIdx[2] += inInc[2];
inPtrZ = inPtrZ + inInc[2]*inIncZ;
}
}
}
//----------------------------------------------------------------------------
// This method is passed a input and output data, and executes the filter
// algorithm to fill the output from the input.
// It just executes a switch statement to call the correct function for
// the regions data types.
void vtkImageMirrorPad::ThreadedRequestData(
vtkInformation * vtkNotUsed( request ),
vtkInformationVector** inputVector,
vtkInformationVector * vtkNotUsed( outputVector ),
vtkImageData ***inData,
vtkImageData **outData,
int outExt[6], int id)
{
// return if nothing to do
if (outExt[1] < outExt[0] ||
outExt[3] < outExt[2] ||
outExt[5] < outExt[4])
{
return;
}
void *outPtr = outData[0]->GetScalarPointerForExtent(outExt);
// get the whole extent
int wExt[6];
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(),wExt);
// this filter expects that input is the same type as output.
if (inData[0][0]->GetScalarType() != outData[0]->GetScalarType())
{
vtkErrorMacro(<< "Execute: input ScalarType, "
<< inData[0][0]->GetScalarType()
<< ", must match out ScalarType "
<< outData[0]->GetScalarType());
return;
}
switch (inData[0][0]->GetScalarType())
{
vtkTemplateMacro(
vtkImageMirrorPadExecute(this, inData[0][0], wExt,
outData[0], static_cast<VTK_TT *>(outPtr),
outExt, id));
default:
vtkErrorMacro(<< "Execute: Unknown ScalarType");
return;
}
}
|