1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkImageResize.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkImageResize.h"
#include "vtkImageInterpolator.h"
#include "vtkImageSincInterpolator.h"
#include "vtkImageInterpolatorInternals.h"
#include "vtkImageData.h"
#include "vtkStreamingDemandDrivenPipeline.h"
#include "vtkObjectFactory.h"
#include "vtkInformationVector.h"
#include "vtkInformation.h"
#include "vtkMath.h"
#include "vtkTemplateAliasMacro.h"
// turn off 64-bit ints when templating over all types
# undef VTK_USE_INT64
# define VTK_USE_INT64 0
# undef VTK_USE_UINT64
# define VTK_USE_UINT64 0
#include <math.h>
vtkStandardNewMacro(vtkImageResize);
vtkCxxSetObjectMacro(vtkImageResize,Interpolator,vtkAbstractImageInterpolator);
//----------------------------------------------------------------------------
vtkImageResize::vtkImageResize()
{
this->ResizeMethod = vtkImageResize::OUTPUT_DIMENSIONS;
this->OutputDimensions[0] = -1;
this->OutputDimensions[1] = -1;
this->OutputDimensions[2] = -1;
this->OutputSpacing[0] = 0;
this->OutputSpacing[1] = 0;
this->OutputSpacing[2] = 0;
this->MagnificationFactors[0] = 1.0;
this->MagnificationFactors[1] = 1.0;
this->MagnificationFactors[2] = 1.0;
this->Border = 0;
this->Cropping = 0;
this->CroppingRegion[0] = 0.0;
this->CroppingRegion[1] = 1.0;
this->CroppingRegion[2] = 0.0;
this->CroppingRegion[3] = 1.0;
this->CroppingRegion[4] = 0.0;
this->CroppingRegion[5] = 1.0;
this->IndexStretch[0] = 1.0;
this->IndexStretch[1] = 1.0;
this->IndexStretch[2] = 1.0;
this->IndexTranslate[0] = 0.0;
this->IndexTranslate[1] = 0.0;
this->IndexTranslate[2] = 0.0;
this->Interpolator = NULL;
this->NNInterpolator = NULL;
this->Interpolate = 1;
}
//----------------------------------------------------------------------------
vtkImageResize::~vtkImageResize()
{
this->SetInterpolator(NULL);
if (this->NNInterpolator)
{
this->NNInterpolator->Delete();
}
}
//----------------------------------------------------------------------------
const char *vtkImageResize::GetResizeMethodAsString()
{
switch (this->ResizeMethod)
{
case vtkImageResize::OUTPUT_DIMENSIONS:
return "OutputDimensions";
case vtkImageResize::OUTPUT_SPACING:
return "OutputSpacing";
case vtkImageResize::MAGNIFICATION_FACTORS:
return "MagnificationFactors";
}
return "";
}
//----------------------------------------------------------------------------
int vtkImageResize::RequestInformation(
vtkInformation *, vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
vtkInformation *outInfo = outputVector->GetInformationObject(0);
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
int inExt[6], outExt[6];
double inSpacing[3], outSpacing[3];
double inOrigin[3], outOrigin[3];
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), inExt);
inInfo->Get(vtkDataObject::SPACING(), inSpacing);
inInfo->Get(vtkDataObject::ORIGIN(), inOrigin);
int inDims[3], outDims[3];
inDims[0] = (inExt[1] - inExt[0] + 1);
inDims[1] = (inExt[3] - inExt[2] + 1);
inDims[2] = (inExt[5] - inExt[4] + 1);
// extend image bounds by half a voxel
double b = ((this->Border != 0) ? 0.5 : 0.0);
double bounds[6];
for (int j = 0; j < 3; j++)
{
bounds[2*j] = inExt[2*j] - b;
bounds[2*j+1] = inExt[2*j+1] + b;
outExt[2*j] = inExt[2*j];
outSpacing[j] = inSpacing[j];
outOrigin[j] = inOrigin[j];
outDims[j] = inDims[j];
}
if (this->Cropping)
{
this->GetCroppingRegion(bounds);
for (int k = 0; k < 3; k++)
{
// if bounds are reversed
if (bounds[2*k] > bounds[2*k+1])
{
double tmp = bounds[2*k];
bounds[2*k] = bounds[2*k+1];
bounds[2*k+1] = tmp;
}
double l = (bounds[2*k] - inOrigin[k])/inSpacing[k];
double h = (bounds[2*k+1] - inOrigin[k])/inSpacing[k];
int flip = (inSpacing[k] < 0);
bounds[2*k+flip] = l;
bounds[2*k+1-flip] = h;
}
}
switch (this->ResizeMethod)
{
case vtkImageResize::OUTPUT_DIMENSIONS:
{
for (int i = 0; i < 3; i++)
{
if (this->OutputDimensions[i] > 0)
{
outDims[i] = this->OutputDimensions[i];
}
double d = (outDims[i] - 1) + 2*b;
double e = bounds[2*i+1] - bounds[2*i];
this->IndexStretch[i] = 1.0;
if (d != 0 && e != 0)
{
this->IndexStretch[i] *= e/d;
}
int flip = (this->IndexStretch[i] < 0);
this->IndexTranslate[i] =
(bounds[2*i + flip] - (outExt[2*i] - b)*this->IndexStretch[i]);
outSpacing[i] = inSpacing[i]*this->IndexStretch[i];
outOrigin[i] = inOrigin[i] + inSpacing[i]*this->IndexTranslate[i];
}
}
break;
case vtkImageResize::OUTPUT_SPACING:
{
for (int i = 0; i < 3; i++)
{
if (this->OutputSpacing[i] != 0)
{
outSpacing[i] = this->OutputSpacing[i];
}
this->IndexStretch[i] = outSpacing[i]/inSpacing[i];
int flip = (this->IndexStretch[i] < 0);
this->IndexTranslate[i] =
(bounds[2*i + flip] - (outExt[2*i] - b)*this->IndexStretch[i]);
outOrigin[i] = inOrigin[i] + inSpacing[i]*this->IndexTranslate[i];
double e = bounds[2*i+1] - bounds[2*i];
double d = fabs(e/this->IndexStretch[i]) - 2*b;
outDims[i] = static_cast<int>(d + VTK_INTERPOLATE_FLOOR_TOL) + 1;
}
}
break;
case vtkImageResize::MAGNIFICATION_FACTORS:
{
for (int i = 0; i < 3; i++)
{
this->IndexStretch[i] = 1.0;
if (this->MagnificationFactors[i] != 0)
{
this->IndexStretch[i] /= this->MagnificationFactors[i];
outSpacing[i] = inSpacing[i]/this->MagnificationFactors[i];
}
int flip = (this->IndexStretch[i] < 0);
this->IndexTranslate[i] =
(bounds[2*i + flip] - (outExt[2*i] - b)*this->IndexStretch[i]);
outOrigin[i] = inOrigin[i] + inSpacing[i]*this->IndexTranslate[i];
double e = bounds[2*i+1] - bounds[2*i];
double d = fabs(e/this->IndexStretch[i]) - 2*b;
outDims[i] = static_cast<int>(d + VTK_INTERPOLATE_FLOOR_TOL) + 1;
}
}
break;
}
for (int k = 0; k < 3; k++)
{
outExt[2*k+1] = outExt[2*k] + outDims[k] - 1;
}
// set the output information
outInfo->Set(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), outExt, 6);
outInfo->Set(vtkDataObject::SPACING(), outSpacing, 3);
outInfo->Set(vtkDataObject::ORIGIN(), outOrigin, 3);
return 1;
}
//----------------------------------------------------------------------------
int vtkImageResize::RequestUpdateExtent(
vtkInformation *, vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
vtkInformation *outInfo = outputVector->GetInformationObject(0);
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
int wholeExt[6];
int extent[6];
outInfo->Get(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), extent);
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), wholeExt);
// get the interpolator
vtkAbstractImageInterpolator *interpolator = this->GetInternalInterpolator();
// set the extent according to the interpolation kernel size:
// first create a matrix to map output to input indices
double elements[16];
for (int i = 0; i < 3; i++)
{
elements[4*i+0] = elements[4*i+1] = elements[4*i+2] = 0;
elements[4*i+i] = this->IndexStretch[i];
elements[4*i+3] = this->IndexTranslate[i];
elements[12+i] = 0;
}
elements[15] = 1;
// get the kernel size
int supportSize[3];
interpolator->ComputeSupportSize(elements, supportSize);
for (int j = 0; j < 3; j++)
{
double range[2];
range[0] = extent[2*j]*this->IndexStretch[j] + this->IndexTranslate[j];
range[1] = extent[2*j+1]*this->IndexStretch[j]+this->IndexTranslate[j];
extent[2*j] = VTK_INT_MAX;
extent[2*j+1] = VTK_INT_MIN;
for (int ii = 0; ii < 2; ii++)
{
int kernelSize = supportSize[j];
int extra = (kernelSize + 1)/2 - 1;
// most kernels have even size
if ((kernelSize & 1) == 0)
{
double f;
int k = vtkInterpolationMath::Floor(range[ii], f);
if (k - extra < extent[2*j])
{
extent[2*j] = k - extra;
}
k += (f != 0);
if (k + extra > extent[2*j+1])
{
extent[2*j+1] = k + extra;
}
}
// else is for kernels with odd size
else
{
int k = vtkInterpolationMath::Round(range[ii]);
if (k < extent[2*j])
{
extent[2*j] = k - extra;
}
if (k > extent[2*j+1])
{
extent[2*j+1] = k + extra;
}
}
}
if (extent[2*j] < wholeExt[2*j])
{
extent[2*j] = wholeExt[2*j];
}
if (extent[2*j+1] > wholeExt[2*j+1])
{
extent[2*j+1] = wholeExt[2*j+1];
}
}
inInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(), extent, 6);
return 1;
}
//----------------------------------------------------------------------------
// Methods used by execute
namespace {
#define VTK_RESIZE_CONVERT_INT_CLAMP(T, minval, maxval) \
void vtkImageResizeConvert(double v, T &u) \
{ \
static double vmin = minval; \
static double vmax = maxval; \
v = (v > vmin ? v : vmin); \
v = (v < vmax ? v : vmax); \
u = vtkInterpolationMath::Round(v); \
}
#define VTK_RESIZE_CONVERT_FLOAT(T) \
void vtkImageResizeConvert(double v, T &u) \
{ \
u = static_cast<T>(v); \
}
VTK_RESIZE_CONVERT_INT_CLAMP(vtkTypeUInt8, 0.0, 255.0);
VTK_RESIZE_CONVERT_INT_CLAMP(vtkTypeUInt16, 0.0, 65535.0);
VTK_RESIZE_CONVERT_INT_CLAMP(vtkTypeUInt32, 0.0, 4294967295.0);
VTK_RESIZE_CONVERT_INT_CLAMP(vtkTypeInt8, -128.0, 127.0);
VTK_RESIZE_CONVERT_INT_CLAMP(vtkTypeInt16, -32768.0, 32767.0);
VTK_RESIZE_CONVERT_INT_CLAMP(vtkTypeInt32, -2147483648.0, 2147483647.0);
VTK_RESIZE_CONVERT_FLOAT(vtkTypeFloat32);
VTK_RESIZE_CONVERT_FLOAT(vtkTypeFloat64);
//----------------------------------------------------------------------------
// Apply a 1D filter in the X direction.
// The inPtr parameter must be positioned at the correct slice.
template<class T>
void vtkImageResizeFilterX(
const T *inPtr, double *outPtr, int ncomp, const int extent[6],
const vtkIdType *a, const double *f, int kernelSize)
{
int pixelCounter = extent[1] - extent[0] + 1;
if (kernelSize == 1)
{
do
{
const T *tmpPtr = inPtr + (*a++);
int i = ncomp;
do
{
*outPtr++ = *tmpPtr++;
}
while (--i);
}
while (--pixelCounter);
}
else
{
do
{
const T *tmpPtr = inPtr;
int i = ncomp;
do
{
const vtkIdType *b = a;
const double *g = f;
double val = (*g++)*tmpPtr[*b++];
int k = kernelSize - 1;
do
{
val += (*g++)*tmpPtr[*b++];
}
while (--k);
tmpPtr++;
vtkImageResizeConvert(val, *outPtr);
outPtr++;
}
while (--i);
a += kernelSize;
f += kernelSize;
}
while (--pixelCounter);
}
}
//----------------------------------------------------------------------------
// Apply a 1D filter along the Y or Z direction, given kernelSize rows
// of data as input and producing one row of data as output. This function
// must be called for each row of the output to filter a whole slice.
template<class T>
void vtkImageResizeFilterYOrZ(
double **rowPtr, T *outPtr, int ncomp, const int extent[6],
const double *f, int kernelSize)
{
// number of data values in one row
vtkIdType rowCounter = (extent[1] - extent[0] + 1)*ncomp;
if (kernelSize == 1)
{
// don't apply the filter, just convert the data
double *tmpPtr = *rowPtr;
do
{
vtkImageResizeConvert(*tmpPtr, *outPtr);
outPtr++;
tmpPtr++;
}
while (--rowCounter);
}
else
{
// apply the filter to one row of the image
int i = 0;
do
{
double **tmpPtr = rowPtr;
const double *g = f;
double val = (*g++)*((*tmpPtr++)[i]);
int k = kernelSize - 1;
do
{
val += (*g++)*((*tmpPtr++)[i]);
}
while (--k);
i++;
vtkImageResizeConvert(val, *outPtr);
outPtr++;
}
while (--rowCounter);
}
}
//----------------------------------------------------------------------------
// Apply a 2D filter to image slices (either XY or XZ slices).
// The inPtr parameter must be positioned at the correct slice.
template<class T, class U>
void vtkImageResizeFilter2D(
const T *inPtr, U *outPtr, const vtkIdType outInc[3], const int extent[6],
const vtkIdType *aX, const double *fX, int kernelSizeX,
const vtkIdType *a, const double *f, int kernelSize,
double **workPtr, int direction, vtkAlgorithm *progress)
{
int ncomp = static_cast<int>(outInc[0]);
int idYMin = extent[2*direction];
int idYMax = extent[2*direction+1];
int progressGoal = idYMax - idYMin + 1;
int progressStep = (progressGoal + 49)/50;
int progressCount = 0;
if (kernelSize == 1)
{
// filter only in the X direction
for (int idY = idYMin; idY <= idYMax; idY++)
{
if (progress != NULL && (progressCount % progressStep) == 0)
{
progress->UpdateProgress(progressCount*1.0/progressGoal);
}
progressCount++;
vtkImageResizeFilterX(
&inPtr[*a], *workPtr, ncomp, extent, aX, fX, kernelSizeX);
vtkImageResizeFilterYOrZ(
workPtr, outPtr, ncomp, extent, f, kernelSize);
outPtr += outInc[direction];
a += kernelSize;
f += kernelSize;
}
}
else
{
// filter in both X and Y directions
int j = kernelSize;
for (int idY = idYMin; idY <= idYMax; idY++)
{
if (progress != NULL && (progressCount % progressStep) == 0)
{
progress->UpdateProgress(progressCount*1.0/progressGoal);
}
progressCount++;
// rotate workspace rows to reuse the ones that can be reused
for (int k = 0; k < kernelSize-j; k++)
{
double *tmpPtr = workPtr[k];
workPtr[k] = workPtr[k+j];
workPtr[k+j] = tmpPtr;
}
// compute the j new rows that must be computed
if (j) do
{
vtkImageResizeFilterX(
&inPtr[*a], workPtr[kernelSize-j], ncomp, extent, aX, fX,
kernelSizeX);
a++;
}
while (--j);
// if this is not the final iteration, then look for overlap between
// the rows that are currently stored and the rows that will be
// needed for the next iteration, store the number of new rows that
// will be needed in variable "j" for use in the next iteration
if (idY < idYMax)
{
for (j = 0; j < kernelSize; j++)
{
int i = kernelSize - j;
const vtkIdType *b = a - i;
const vtkIdType *c = a;
do
{
if (*c++ != *b++) { break; }
}
while (--i);
if (i == 0) { break; }
}
a += kernelSize-j;
}
vtkImageResizeFilterYOrZ(
workPtr, outPtr, ncomp, extent, f, kernelSize);
outPtr += outInc[direction];
f += kernelSize;
}
}
}
//----------------------------------------------------------------------------
// Apply separable blur filter fX, fY, fZ to an image with minimum
// memory overhead (3 rows of temp storage for 2D, 3 slices for 3D).
// The aX, aY, and aZ contain increments for the X, Y, and Z
// directions.
template<class T>
void vtkImageResizeFilter3D(
const T *inPtr, T *outPtr, const vtkIdType outInc[3], const int extent[6],
const vtkIdType *aX, const double *fX, int kernelSizeX,
const vtkIdType *aY, const double *fY, int kernelSizeY,
const vtkIdType *aZ, const double *fZ, int kernelSizeZ,
vtkAlgorithm *progress)
{
vtkIdType rowSize = outInc[0]*(extent[1] - extent[0] + 1);
int ncomp = static_cast<int>(outInc[0]);
aX += extent[0]*kernelSizeX;
aY += extent[2]*kernelSizeY;
aZ += extent[4]*kernelSizeZ;
fX += extent[0]*kernelSizeX;
fY += extent[2]*kernelSizeY;
fZ += extent[4]*kernelSizeZ;
if (kernelSizeX == 1 && kernelSizeY == 1 && kernelSizeZ == 1)
{
// no interpolation, no intermediate data needed
int idYMin = extent[2];
int idYMax = extent[3];
int idZMin = extent[4];
int idZMax = extent[5];
int pixelCounter = extent[1] - extent[0] + 1;
vtkIdType progressGoal = (idYMax - idYMin + 1);
progressGoal *= (idZMax - idZMin + 1);
vtkIdType progressCount = 0;
vtkIdType progressStep = (progressGoal + 49)/50;
if (pixelCounter > 0)
{
for (int idZ = idZMin; idZ <= idZMax; idZ++)
{
const T *tmpPtrZ = inPtr + (*aZ++);
const vtkIdType *aYtmp = aY;
for (int idY = idYMin; idY <= idYMax; idY++)
{
const T *tmpPtrY = tmpPtrZ + (*aYtmp++);
const vtkIdType *aXtmp = aX;
if (progress != NULL && (progressCount % progressStep) == 0)
{
progress->UpdateProgress(progressCount*1.0/progressGoal);
}
progressCount++;
int j = pixelCounter;
do
{
const T *tmpPtr = tmpPtrY + (*aXtmp++);
int i = ncomp;
do
{
*outPtr++ = *tmpPtr++;
}
while (--i);
}
while (--j);
}
}
}
}
else if (kernelSizeZ == 1 || kernelSizeY == 1)
{
// it is possible to just apply a 2D filter to each slice
int sliceDirection = 2;
int direction = 1;
int kernelSizeSlice = kernelSizeZ;
int kernelSize = kernelSizeY;
const vtkIdType *aSlice = aZ;
const vtkIdType *a = aY;
const double *f = fY;
if (kernelSizeY == 1)
{
sliceDirection = 1;
direction = 2;
kernelSizeSlice = kernelSizeY;
kernelSize = kernelSizeZ;
aSlice = aY;
a = aZ;
f = fZ;
}
// apply filter to all XY or XZ slices
vtkIdType workSize = rowSize*kernelSize;
double *workPtr2 = new double[workSize];
double **workPtr = new double *[kernelSize];
for (int ii = 0; ii < kernelSize; ii++)
{
workPtr[ii] = workPtr2 + ii*rowSize;
}
// the slice range
int sliceMin = extent[2*sliceDirection];
int sliceMax = extent[2*sliceDirection+1];
// progress reporting variables
int progressGoal = sliceMax - sliceMin + 1;
int progressStep = (progressGoal + 49)/50;
int progressCount = 0;
vtkAlgorithm *rowProgress = NULL;
if (progressGoal == 1)
{
// if one slice, report progress by rows instead
rowProgress = progress;
progress = NULL;
}
for (int slice = sliceMin; slice <= sliceMax; slice++)
{
if (progress != NULL && (progressCount % progressStep) == 0)
{
progress->UpdateProgress(progressCount*1.0/progressGoal);
}
progressCount++;
vtkImageResizeFilter2D(
&inPtr[*aSlice], outPtr, outInc, extent,
aX, fX, kernelSizeX, a, f, kernelSize,
workPtr, direction, rowProgress);
aSlice += kernelSizeSlice;
outPtr += outInc[sliceDirection];
}
delete [] workPtr2;
delete [] workPtr;
}
else
{
// apply filter in all three directions: first X, then Z, then Y
// (doing Z second is most efficient, memory-wise, because it is
// the dimension broken up between threads)
// compute temporary workspace requirements
vtkIdType sliceSize = rowSize*(extent[5] - extent[4] + 1);
vtkIdType workSize = rowSize*kernelSizeZ;
workSize += sliceSize*kernelSizeY;
// part of workspace goes to temporary rows
double *workPtr2 = new double[workSize];
double **workPtr = new double *[kernelSizeZ + kernelSizeY];
for (int jj = 0; jj < kernelSizeZ; jj++)
{
workPtr[jj] = workPtr2 + jj*rowSize;
}
// part of the workspace goes to temporary slices
double *workPtr3 = workPtr2 + kernelSizeZ*rowSize;
double **slicePtr = workPtr + kernelSizeZ;
for (int ii = 0; ii < kernelSizeY; ii++)
{
slicePtr[ii] = workPtr3 + ii*sliceSize;
}
// increments for temporary slices
vtkIdType sliceInc[3];
sliceInc[0] = outInc[0];
sliceInc[1] = sliceInc[0]*(extent[1] - extent[0] + 1);
sliceInc[2] = sliceInc[1];
// progress reporting variables
int progressGoal = extent[3] - extent[2] + 1;
int progressStep = (progressGoal + 49)/50;
int progressCount = 0;
// loop through the XZ slices
int j = kernelSizeY;
for (int idY = extent[2]; idY <= extent[3]; idY++)
{
if (progress != NULL && (progressCount % progressStep) == 0)
{
progress->UpdateProgress(progressCount*1.0/progressGoal);
}
progressCount++;
// reuse all but j of the temporary slices
for (int k = 0; k < kernelSizeY-j; k++)
{
double *tmpPtr = slicePtr[k];
slicePtr[k] = slicePtr[k+j];
slicePtr[k+j] = tmpPtr;
}
// compute the j new slices that are needed
if (j) do
{
vtkImageResizeFilter2D(
&inPtr[*aY], slicePtr[kernelSizeY-j], sliceInc, extent,
aX, fX, kernelSizeX, aZ, fZ, kernelSizeZ,
workPtr, 2, NULL);
aY++;
}
while (--j);
// if this is not the final iteration, then look for overlap between
// the slices that are currently stored and the slices that will be
// needed for the next iteration, store the number of new slices that
// will be needed in variable "j" for use in the next iteration
if (idY < extent[3])
{
for (j = 0; j < kernelSizeY; j++)
{
int i = kernelSizeY - j;
const vtkIdType *bY = aY - i;
const vtkIdType *cY = aY;
do
{
if (*cY++ != *bY++) { break; }
}
while (--i);
if (i == 0) { break; }
}
aY += kernelSizeY-j;
}
// loop through the rows of this slice
T *outPtr0 = outPtr;
for (int idZ = extent[4]; idZ <= extent[5]; idZ++)
{
vtkImageResizeFilterYOrZ(
slicePtr, outPtr0, ncomp, extent, fY, kernelSizeY);
outPtr0 += outInc[2];
for (int i = 0; i < kernelSizeY; i++)
{
slicePtr[i] += rowSize;
}
}
// reset the slicePtr values to their initial values
for (int i = 0; i < kernelSizeY; i++)
{
slicePtr[i] -= sliceSize;
}
fY += kernelSizeY;
outPtr += outInc[1];
}
delete [] workPtr2;
delete [] workPtr;
}
}
} // end anonymous namespace
//----------------------------------------------------------------------------
// RequestData is where the interpolator is updated, since it must be updated
// before the threads are split
int vtkImageResize::RequestData(
vtkInformation* request,
vtkInformationVector** inputVector,
vtkInformationVector* outputVector)
{
vtkAbstractImageInterpolator *interpolator = this->GetInternalInterpolator();
vtkInformation* info = inputVector[0]->GetInformationObject(0);
interpolator->Initialize(info->Get(vtkDataObject::DATA_OBJECT()));
int rval = this->Superclass::RequestData(request, inputVector, outputVector);
interpolator->ReleaseData();
return rval;
}
//----------------------------------------------------------------------------
void vtkImageResize::ThreadedRequestData(vtkInformation *,
vtkInformationVector **, vtkInformationVector *,
vtkImageData ***, vtkImageData **outData, int extent[6],
int threadId)
{
vtkDebugMacro("Execute: outData = " << outData);
// get the pointer and increments
vtkIdType outInc[3];
outData[0]->GetIncrements(outInc);
void *outPtr = outData[0]->GetScalarPointerForExtent(extent);
int outScalarType = outData[0]->GetScalarType();
// create a matrix to map output to input indices
double newmat[4][4];
for (int i = 0; i < 3; i++)
{
newmat[i][0] = newmat[i][1] = newmat[i][2] = 0;
newmat[i][i] = this->IndexStretch[i];
newmat[i][3] = this->IndexTranslate[i];
newmat[3][i] = 0;
}
newmat[3][3] = 1;
// fill in the interpolation tables
vtkAbstractImageInterpolator *interpolator = this->GetInternalInterpolator();
int clipExt[6];
vtkInterpolationWeights *weights;
interpolator->PrecomputeWeightsForExtent(*newmat, extent, clipExt, weights);
// prepare table for use by this filter
int kernelSizeX = weights->KernelSize[0];
vtkIdType *aX = weights->Positions[0];
const double *fX = static_cast<double *>(weights->Weights[0]);
int kernelSizeY = weights->KernelSize[1];
vtkIdType *aY = weights->Positions[1];
const double *fY = static_cast<double *>(weights->Weights[1]);
int kernelSizeZ = weights->KernelSize[2];
vtkIdType *aZ = weights->Positions[2];
const double *fZ = static_cast<double *>(weights->Weights[2]);
// get the pointer and scalar type
const void *inPtr = weights->Pointer;
int inScalarType = weights->ScalarType;
// progress object if main thread
vtkAlgorithm *progress = ((threadId == 0) ? this : NULL);
// call the execute method
if (outScalarType == inScalarType)
{
switch (inScalarType)
{
vtkTemplateAliasMacro(
vtkImageResizeFilter3D(
static_cast<const VTK_TT *>(inPtr),
static_cast<VTK_TT *>(outPtr), outInc, extent,
aX, fX, kernelSizeX,
aY, fY, kernelSizeY,
aZ, fZ, kernelSizeZ,
progress));
default:
vtkErrorMacro("Execute: Unknown ScalarType");
}
}
else
{
vtkErrorMacro("ThreadedRequestData: output scalar type does not match "
"input scalar type");
}
interpolator->FreePrecomputedWeights(weights);
}
//----------------------------------------------------------------------------
void vtkImageResize::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "ResizeMethod: " << this->GetResizeMethodAsString() << "\n";
os << indent << "OutputDimensions: "
<< this->OutputDimensions[0] << " "
<< this->OutputDimensions[1] << " "
<< this->OutputDimensions[2] << "\n";
os << indent << "OutputSpacing: "
<< this->OutputSpacing[0] << " "
<< this->OutputSpacing[1] << " "
<< this->OutputSpacing[2] << "\n";
os << indent << "MagnificationFactors: "
<< this->MagnificationFactors[0] << " "
<< this->MagnificationFactors[1] << " "
<< this->MagnificationFactors[2] << "\n";
os << indent << "Border: " << (this->Border ? "On\n" : "Off\n");
os << indent << "Cropping: " << (this->Cropping ? "On\n" : "Off\n");
os << indent << "CroppingRegion: "
<< this->CroppingRegion[0] << " " << this->CroppingRegion[1] << " "
<< this->CroppingRegion[2] << " " << this->CroppingRegion[3] << " "
<< this->CroppingRegion[4] << " " << this->CroppingRegion[5] << "\n";
os << indent << "Interpolate: " << (this->Interpolate ? "On\n" : "Off\n");
os << indent << "Interpolator: " << this->Interpolator << "\n";
}
//----------------------------------------------------------------------------
vtkAbstractImageInterpolator *vtkImageResize::GetInterpolator()
{
if (this->Interpolator == NULL)
{
vtkImageSincInterpolator *i = vtkImageSincInterpolator::New();
i->SetWindowFunctionToLanczos();
i->SetWindowHalfWidth(3);
i->AntialiasingOn();
this->Interpolator = i;
}
return this->Interpolator;
}
//----------------------------------------------------------------------------
vtkAbstractImageInterpolator *vtkImageResize::GetInternalInterpolator()
{
if (this->Interpolate)
{
return this->GetInterpolator();
}
if (!this->NNInterpolator)
{
vtkImageInterpolator *nn = vtkImageInterpolator::New();
nn->SetInterpolationModeToNearest();
this->NNInterpolator = nn;
}
return this->NNInterpolator;
}
//----------------------------------------------------------------------------
unsigned long int vtkImageResize::GetMTime()
{
unsigned long mTime=this->Superclass::GetMTime();
unsigned long time;
if (this->Interpolate != 0 && this->Interpolator != NULL)
{
time = this->Interpolator->GetMTime();
mTime = ( time > mTime ? time : mTime );
}
return mTime;
}
|