1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkImageRange3D.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkImageRange3D.h"
#include "vtkImageData.h"
#include "vtkImageEllipsoidSource.h"
#include "vtkInformation.h"
#include "vtkInformationVector.h"
#include "vtkObjectFactory.h"
#include "vtkStreamingDemandDrivenPipeline.h"
vtkStandardNewMacro(vtkImageRange3D);
//----------------------------------------------------------------------------
// Construct an instance of vtkImageRange3D fitler.
// By default zero values are dilated.
vtkImageRange3D::vtkImageRange3D()
{
this->HandleBoundaries = 1;
this->KernelSize[0] = 1;
this->KernelSize[1] = 1;
this->KernelSize[2] = 1;
this->Ellipse = vtkImageEllipsoidSource::New();
// Setup the Ellipse to default size
this->SetKernelSize(1, 1, 1);
}
//----------------------------------------------------------------------------
vtkImageRange3D::~vtkImageRange3D()
{
if (this->Ellipse)
{
this->Ellipse->Delete();
this->Ellipse = NULL;
}
}
//----------------------------------------------------------------------------
void vtkImageRange3D::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
}
//----------------------------------------------------------------------------
// This method sets the size of the neighborhood. It also sets the
// default middle of the neighborhood and computes the eliptical foot print.
void vtkImageRange3D::SetKernelSize(int size0, int size1, int size2)
{
int modified = 0;
if (this->KernelSize[0] != size0)
{
modified = 1;
this->KernelSize[0] = size0;
this->KernelMiddle[0] = size0 / 2;
}
if (this->KernelSize[1] != size1)
{
modified = 1;
this->KernelSize[1] = size1;
this->KernelMiddle[1] = size1 / 2;
}
if (this->KernelSize[2] != size2)
{
modified = 1;
this->KernelSize[2] = size2;
this->KernelMiddle[2] = size2 / 2;
}
if (modified)
{
this->Modified();
this->Ellipse->SetWholeExtent(0, this->KernelSize[0]-1,
0, this->KernelSize[1]-1,
0, this->KernelSize[2]-1);
this->Ellipse->SetCenter(static_cast<float>(this->KernelSize[0]-1)*0.5,
static_cast<float>(this->KernelSize[1]-1)*0.5,
static_cast<float>(this->KernelSize[2]-1)*0.5);
this->Ellipse->SetRadius(static_cast<float>(this->KernelSize[0])*0.5,
static_cast<float>(this->KernelSize[1])*0.5,
static_cast<float>(this->KernelSize[2])*0.5);
// make sure scalars have been allocated (needed if multithreaded is used)
vtkInformation *ellipseOutInfo =
this->Ellipse->GetExecutive()->GetOutputInformation(0);
ellipseOutInfo->Set(vtkStreamingDemandDrivenPipeline::UPDATE_EXTENT(),
0, this->KernelSize[0]-1,
0, this->KernelSize[1]-1,
0, this->KernelSize[2]-1);
this->Ellipse->Update();
}
}
//----------------------------------------------------------------------------
// Output is always float
int vtkImageRange3D::RequestInformation (vtkInformation *request,
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
this->Superclass::RequestInformation(request, inputVector, outputVector);
vtkInformation *outInfo = outputVector->GetInformationObject(0);
vtkDataObject::SetPointDataActiveScalarInfo(outInfo, VTK_FLOAT, -1);
return 1;
}
//----------------------------------------------------------------------------
// This templated function executes the filter on any region,
// whether it needs boundary checking or not.
// If the filter needs to be faster, the function could be duplicated
// for strictly center (no boundary ) processing.
template <class T>
void vtkImageRange3DExecute(vtkImageRange3D *self,
vtkImageData *mask,
vtkImageData *inData, T *inPtr,
vtkImageData *outData, int *outExt,
float *outPtr, int id,
vtkInformation *inInfo)
{
int *kernelMiddle, *kernelSize;
// For looping though output (and input) pixels.
int outMin0, outMax0, outMin1, outMax1, outMin2, outMax2;
int outIdx0, outIdx1, outIdx2;
vtkIdType inInc0, inInc1, inInc2;
vtkIdType outInc0, outInc1, outInc2;
T *inPtr0, *inPtr1, *inPtr2;
float *outPtr0, *outPtr1, *outPtr2;
int numComps, outIdxC;
// For looping through hood pixels
int hoodMin0, hoodMax0, hoodMin1, hoodMax1, hoodMin2, hoodMax2;
int hoodIdx0, hoodIdx1, hoodIdx2;
T *hoodPtr0, *hoodPtr1, *hoodPtr2;
// For looping through the mask.
unsigned char *maskPtr, *maskPtr0, *maskPtr1, *maskPtr2;
vtkIdType maskInc0, maskInc1, maskInc2;
// The extent of the whole input image
int inImageMin0, inImageMin1, inImageMin2;
int inImageMax0, inImageMax1, inImageMax2;
int inImageExt[6];
// to compute the range
T pixelMin, pixelMax;
unsigned long count = 0;
unsigned long target;
// Get information to march through data
inData->GetIncrements(inInc0, inInc1, inInc2);
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), inImageExt);
inImageMin0 = inImageExt[0];
inImageMax0 = inImageExt[1];
inImageMin1 = inImageExt[2];
inImageMax1 = inImageExt[3];
inImageMin2 = inImageExt[4];
inImageMax2 = inImageExt[5];
outData->GetIncrements(outInc0, outInc1, outInc2);
outMin0 = outExt[0]; outMax0 = outExt[1];
outMin1 = outExt[2]; outMax1 = outExt[3];
outMin2 = outExt[4]; outMax2 = outExt[5];
numComps = outData->GetNumberOfScalarComponents();
// Get ivars of this object (easier than making friends)
kernelSize = self->GetKernelSize();
kernelMiddle = self->GetKernelMiddle();
hoodMin0 = - kernelMiddle[0];
hoodMin1 = - kernelMiddle[1];
hoodMin2 = - kernelMiddle[2];
hoodMax0 = hoodMin0 + kernelSize[0] - 1;
hoodMax1 = hoodMin1 + kernelSize[1] - 1;
hoodMax2 = hoodMin2 + kernelSize[2] - 1;
// Setup mask info
maskPtr = static_cast<unsigned char *>(mask->GetScalarPointer());
mask->GetIncrements(maskInc0, maskInc1, maskInc2);
// in and out should be marching through corresponding pixels.
inPtr = static_cast<T *>(
inData->GetScalarPointer(outMin0, outMin1, outMin2));
target = static_cast<unsigned long>(numComps*(outMax2-outMin2+1)*
(outMax1-outMin1+1)/50.0);
target++;
// loop through components
for (outIdxC = 0; outIdxC < numComps; ++outIdxC)
{
// loop through pixels of output
outPtr2 = outPtr;
inPtr2 = inPtr;
for (outIdx2 = outMin2; outIdx2 <= outMax2; ++outIdx2)
{
outPtr1 = outPtr2;
inPtr1 = inPtr2;
for (outIdx1 = outMin1;
!self->AbortExecute && outIdx1 <= outMax1; ++outIdx1)
{
if (!id)
{
if (!(count%target))
{
self->UpdateProgress(count/(50.0*target));
}
count++;
}
outPtr0 = outPtr1;
inPtr0 = inPtr1;
for (outIdx0 = outMin0; outIdx0 <= outMax0; ++outIdx0)
{
// Find min and max
pixelMin = pixelMax = *inPtr0;
// loop through neighborhood pixels
// as sort of a hack to handle boundaries,
// input pointer will be marching through data that does not exist.
hoodPtr2 = inPtr0 - kernelMiddle[0] * inInc0
- kernelMiddle[1] * inInc1 - kernelMiddle[2] * inInc2;
maskPtr2 = maskPtr;
for (hoodIdx2 = hoodMin2; hoodIdx2 <= hoodMax2; ++hoodIdx2)
{
hoodPtr1 = hoodPtr2;
maskPtr1 = maskPtr2;
for (hoodIdx1 = hoodMin1; hoodIdx1 <= hoodMax1; ++hoodIdx1)
{
hoodPtr0 = hoodPtr1;
maskPtr0 = maskPtr1;
for (hoodIdx0 = hoodMin0; hoodIdx0 <= hoodMax0; ++hoodIdx0)
{
// A quick but rather expensive way to handle boundaries
if ( outIdx0 + hoodIdx0 >= inImageMin0 &&
outIdx0 + hoodIdx0 <= inImageMax0 &&
outIdx1 + hoodIdx1 >= inImageMin1 &&
outIdx1 + hoodIdx1 <= inImageMax1 &&
outIdx2 + hoodIdx2 >= inImageMin2 &&
outIdx2 + hoodIdx2 <= inImageMax2)
{
if (*maskPtr0)
{
if (*hoodPtr0 < pixelMin)
{
pixelMin = *hoodPtr0;
}
if (*hoodPtr0 > pixelMax)
{
pixelMax = *hoodPtr0;
}
}
}
hoodPtr0 += inInc0;
maskPtr0 += maskInc0;
}
hoodPtr1 += inInc1;
maskPtr1 += maskInc1;
}
hoodPtr2 += inInc2;
maskPtr2 += maskInc2;
}
*outPtr0 = static_cast<float>(pixelMax - pixelMin);
inPtr0 += inInc0;
outPtr0 += outInc0;
}
inPtr1 += inInc1;
outPtr1 += outInc1;
}
inPtr2 += inInc2;
outPtr2 += outInc2;
}
++inPtr;
++outPtr;
}
}
//----------------------------------------------------------------------------
// This method contains the first switch statement that calls the correct
// templated function for the input and output Data types.
// It hanldes image boundaries, so the image does not shrink.
void vtkImageRange3D::ThreadedRequestData(
vtkInformation *vtkNotUsed(request),
vtkInformationVector **inputVector,
vtkInformationVector *vtkNotUsed(outputVector),
vtkImageData ***inData,
vtkImageData **outData,
int outExt[6], int id)
{
int inExt[6], wholeExt[6];
vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);
inInfo->Get(vtkStreamingDemandDrivenPipeline::WHOLE_EXTENT(), wholeExt);
this->InternalRequestUpdateExtent(inExt,outExt,wholeExt);
void *inPtr = inData[0][0]->GetScalarPointerForExtent(inExt);
void *outPtr = outData[0]->GetScalarPointerForExtent(outExt);
vtkImageData *mask;
// Error checking on mask
mask = this->Ellipse->GetOutput();
if (mask->GetScalarType() != VTK_UNSIGNED_CHAR)
{
vtkErrorMacro(<< "Execute: mask has wrong scalar type");
return;
}
// this filter expects the output to be float
if (outData[0]->GetScalarType() != VTK_FLOAT)
{
vtkErrorMacro(<< "Execute: output ScalarType, "
<< vtkImageScalarTypeNameMacro(outData[0]->GetScalarType())
<< " must be float");
return;
}
switch (inData[0][0]->GetScalarType())
{
vtkTemplateMacro(
vtkImageRange3DExecute(this, mask, inData[0][0],
static_cast<VTK_TT *>(inPtr), outData[0], outExt,
static_cast<float *>(outPtr), id, inInfo));
default:
vtkErrorMacro(<< "Execute: Unknown ScalarType");
return;
}
}
//----------------------------------------------------------------------------
int vtkImageRange3D::RequestData(vtkInformation *request,
vtkInformationVector **inputVector,
vtkInformationVector *outputVector)
{
this->Ellipse->Update();
return this->Superclass::RequestData(request, inputVector, outputVector);
}
|