1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
//=========================================================================
//
// Program: Visualization Toolkit
// Module: vtkStructuredGridLIC2D_fs.glsl
//
// Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
// All rights reserved.
// See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
//
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
//=========================================================================
// Filename: vtkStructuredGridLIC2D_fs.glsl
// Filename is useful when using gldb-gui
#version 120 // because of transpose()
/*
For an input structure grid, this computes the inverse jacobian for each point.
Algorithm:
* PASS ONE
* * render to compute the transformed vector field for the points.
* PASS TWO
* * perform LIC with the new vector field. This has to happen in a different
* pass than computation of the transformed vector.
* PASS THREE
* * Render structued slice quads with correct texture correct tcoords and apply
* the LIC texture to it.
*/
uniform sampler2D texPoints; // point coordinates
uniform sampler2D texVectorField; // vector field.
uniform vec3 uDimensions; // structured dimensions; initially == (width, height, 1)
uniform int uSlice; // 0,1,2
ivec3 getIJK(vec3 ninjnk, vec3 dims)
{
return ivec3(floor(ninjnk*(dims-1.0)+vec3(0.5, 0.5, 0.5)));
}
vec3 getVector(ivec3 ijk, vec3 dims, sampler2D field)
{
// ignoring k component for now since dims = (width, height, 1)
// not any more.
vec3 rcoord = vec3(ijk)/max(vec3(1.0), dims-1.0);
vec2 tcoord;
if(uSlice==0)
{
tcoord.xy=rcoord.yz;
}
else
{
if(uSlice==1)
{
tcoord.xy=rcoord.xz;
}
else
{
tcoord.xy=rcoord.xy;
}
}
return texture2D(field, tcoord).xyz;
}
float determinant(mat3 m)
{
// develop determinant along first row.
return m[0][0]*(m[2][2]*m[1][1] - m[2][1]*m[1][2])
- m[1][0]*(m[2][2]*m[0][1] - m[2][1]*m[0][2])
+ m[2][0]*(m[1][2]*m[0][1] - m[1][1]*m[0][2]);
}
mat3 inverse(mat3 mm, float det)
{
mat3 m=transpose(mm);
mat3 adjM = mat3(
m[2][2]*m[1][1]-m[2][1]*m[1][2], -(m[2][2]*m[0][1]-m[2][1]*m[0][2]), m[1][2]*m[0][1]-m[1][1]*m[0][2],
-(m[2][2]*m[1][0]-m[2][0]*m[1][2]), m[2][2]*m[0][0]-m[2][0]*m[0][2], -(m[1][2]*m[0][0]-m[1][0]*m[0][2]),
m[2][1]*m[1][0]-m[2][0]*m[1][1], -(m[2][1]*m[0][0]-m[2][0]*m[0][1]), m[1][1]*m[0][0]-m[1][0]*m[0][1]
);
return adjM/det;
}
mat3 jacobian(ivec3 ijk, vec3 dims, sampler2D tex)
{
// Jacobian is estimated with a central finite difference technique.
// get point coordinates at (i, j, k),
// vec3 pts_I_J_K = getVector(ijk, dims, tex);
//(i-1, j, k), (i+1, j, k)
vec3 pts_IM1_J_K = getVector(ivec3(ijk.x-1, ijk.yz), dims, tex);
vec3 pts_I1_J_K = getVector(ivec3(ijk.x+1, ijk.yz), dims, tex);
// (i, j-1, k), (i, j+1, k)
vec3 pts_I_JM1_K = getVector(ivec3(ijk.x, ijk.y-1, ijk.z), dims, tex);
vec3 pts_I_J1_K = getVector(ivec3(ijk.x, ijk.y+1, ijk.z), dims, tex);
// (i, j, k-1), (i, j, k+1).
vec3 pts_I_J_KM1 = getVector(ivec3(ijk.xy, ijk.z-1), dims, tex);
vec3 pts_I_J_K1 = getVector(ivec3(ijk.xy, ijk.z+1), dims, tex);
vec3 col1 = 0.5*(pts_I1_J_K - pts_IM1_J_K);
vec3 col2 = 0.5*(pts_I_J1_K - pts_I_JM1_K);
vec3 col3 = 0.5*(pts_I_J_K1 - pts_I_J_KM1);
if(uSlice==0)
{
col1[0]=1.0;
}
else
{
if(uSlice==1)
{
col2[1]=1.0;
}
else
{
col3[2]=1.0;
}
}
/*
Jacobian is given by
| dx/di, dx/dj, dx/dk |
| dy/di, dy/dj, dy/dk |
| dz/di, dz/dj, dz/dk |
where d == partial derivative
*/
mat3 J = mat3(col1, col2, col3);
return J;
}
void main(void)
{
// determine the structured coordinate for the current location.
vec3 tcoord;
if(uSlice==0)
{
tcoord=vec3(0,gl_TexCoord[0].st);
}
else
{
if(uSlice==1)
{
tcoord=vec3(gl_TexCoord[0].s,0,gl_TexCoord[0].t);
}
else
{
tcoord=vec3(gl_TexCoord[0].st, 0);
}
}
ivec3 ijk = getIJK(tcoord, uDimensions);
// compute partial derivative for X.
mat3 J = jacobian(ijk, uDimensions, texPoints);
// compute inverse of J.
vec3 vector = getVector(ijk, uDimensions, texVectorField);
float detJ=determinant(J);
mat3 invJ = inverse(J,detJ);
gl_FragData[0] = vec4(invJ*vector, 1.0);
//gl_FragData[0] = vec4(vector, 1.0);
// gl_FragData[0] = vec4(detJ);
// gl_FragData[0] = vec4(J[2],1.0);
}
|