1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkLineIntegralConvolution2D.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkLineIntegralConvolution2D.h"
#include "vtkShader2.h"
#include "vtkTextureObject.h"
#include "vtkShaderProgram2.h"
#include "vtkUniformVariables.h"
#include "vtkShader2Collection.h"
#include "vtkFrameBufferObject.h"
#include "vtkOpenGLExtensionManager.h"
#include "vtkMath.h"
#include "vtkTimerLog.h"
#include "vtkObjectFactory.h"
#include "vtkOpenGLRenderWindow.h"
#include <string>
extern const char *vtkLineIntegralConvolution2D_fs;
extern const char *vtkLineIntegralConvolution2D_fs1;
extern const char *vtkLineIntegralConvolution2D_fs2;
#include "vtkgl.h"
static const char * vtkLineIntegralConvolution2DCode =
// $,$ are replaced with [x,y,z,w]
"vec2 getSelectedComponents(vec4 color)"
"{"
" return color.$$;"
"}";
//#define VTK_LICDEBUGON
#ifdef VTK_LICDEBUGON
#define vtkLICDebug(x) cout << x << endl;
#else
#define vtkLICDebug(x)
#endif
vtkStandardNewMacro( vtkLineIntegralConvolution2D );
// Given the coordinate range of the vector texture, that of the resulting
// LIC texture, and the size of the output image, this function invokes the
// GLSL vertex and fragment shaders by issuing a command of rendering a quad
//
// vTCoords[4]: a sub-region of the input vector field that is determined
// by the view projection
//
// licTCoords[4]: the resulting LIC texture, of which the whole [ 0.0, 1.0 ]
// x [ 0.0, 1.0 ], though physically matching only a sub-
// region of the input vector field, is always rendered
//
// width and height: the size (in number of pixels) of the output image
//
static void vtkRenderQuad( double vTCoords[4], double licTCoords[4],
unsigned int width, unsigned int height )
{
// glTexCoord2f( tcoordx, tcoordy )
// == vtkgl::MultiTexCoord2f( vtkgl::TEXTURE0, tcoordx, tcoordy )
glBegin( GL_QUADS );
// lower left
vtkgl::MultiTexCoord2f( vtkgl::TEXTURE0,
static_cast<GLfloat>( licTCoords[0] ),
static_cast<GLfloat>( licTCoords[2] ) );
vtkgl::MultiTexCoord2f( vtkgl::TEXTURE1,
static_cast< GLfloat >( vTCoords[0] ),
static_cast< GLfloat >( vTCoords[2] ) );
glVertex2f( 0, 0 );
// lower right
vtkgl::MultiTexCoord2f( vtkgl::TEXTURE0,
static_cast< GLfloat >( licTCoords[1] ),
static_cast< GLfloat >( licTCoords[2] ) );
vtkgl::MultiTexCoord2f( vtkgl::TEXTURE1,
static_cast< GLfloat >( vTCoords[1] ),
static_cast< GLfloat >( vTCoords[2] ) );
glVertex2f( static_cast< GLfloat >( width ), 0 );
// upper right
vtkgl::MultiTexCoord2f( vtkgl::TEXTURE0,
static_cast< GLfloat >( licTCoords[1] ),
static_cast< GLfloat >( licTCoords[3] ) );
vtkgl::MultiTexCoord2f( vtkgl::TEXTURE1,
static_cast< GLfloat >( vTCoords[1] ),
static_cast< GLfloat >( vTCoords[3] ) );
glVertex2f( static_cast< GLfloat >( width ),
static_cast< GLfloat >( height ) );
// upper left
vtkgl::MultiTexCoord2f( vtkgl::TEXTURE0,
static_cast< GLfloat >( licTCoords[0] ),
static_cast< GLfloat >( licTCoords[3] ) );
vtkgl::MultiTexCoord2f( vtkgl::TEXTURE1,
static_cast< GLfloat >( vTCoords[0] ),
static_cast< GLfloat >( vTCoords[3] ) );
glVertex2f( 0, static_cast< GLfloat >( height ) );
glEnd();
}
#define RENDERQUAD vtkRenderQuad( vTCoords, licTCoords, outWidth, outHeight );
// ----------------------------------------------------------------------------
vtkLineIntegralConvolution2D::vtkLineIntegralConvolution2D()
{
this->LIC = NULL;
this->Noise = NULL;
this->VectorField = NULL;
this->VectorShift = 0.00;
this->VectorScale = 1.00;
this->LICStepSize = 0.01;
this->NumberOfSteps = 1;
this->GridSpacings[0] = 1.0;
this->GridSpacings[1] = 1.0;
this->ComponentIds[0] = 0;
this->ComponentIds[1] = 1;
this->EnhancedLIC = 1;
this->LICForSurface = 0;
this->Magnification = 1;
this->TransformVectors = 1;
}
// ----------------------------------------------------------------------------
vtkLineIntegralConvolution2D::~vtkLineIntegralConvolution2D()
{
if ( this->LIC )
{
this->LIC->Delete();
this->LIC = NULL;
}
if ( this->Noise )
{
this->Noise->Delete();
this->Noise = NULL;
}
if ( this->VectorField )
{
this->VectorField->Delete();
this->VectorField = NULL;
}
}
// ----------------------------------------------------------------------------
void vtkLineIntegralConvolution2D::SetLIC( vtkTextureObject * lic )
{
vtkSetObjectBodyMacro( LIC, vtkTextureObject, lic );
}
// ----------------------------------------------------------------------------
void vtkLineIntegralConvolution2D::SetNoise( vtkTextureObject * noise )
{
vtkSetObjectBodyMacro( Noise, vtkTextureObject, noise );
}
// ----------------------------------------------------------------------------
void vtkLineIntegralConvolution2D::SetVectorField
( vtkTextureObject * vectorField )
{
vtkSetObjectBodyMacro( VectorField, vtkTextureObject, vectorField );
}
// ----------------------------------------------------------------------------
int vtkLineIntegralConvolution2D::Execute()
{
unsigned int extent[4] = { 0, 0, 0, 0 };
extent[1] = this->VectorField->GetWidth() - 1;
extent[3] = this->VectorField->GetHeight() - 1;
return this->Execute( extent );
}
// ----------------------------------------------------------------------------
int vtkLineIntegralConvolution2D::Execute( int extent[4] )
{
unsigned int uiExtent[4];
for ( int i = 0; i < 4; i ++ )
{
if ( extent[i] < 0 )
{
vtkErrorMacro( "Invalid input extent." );
return 0;
}
uiExtent[i] = static_cast< unsigned int >( extent[i] );
}
return this->Execute( uiExtent );
}
// ----------------------------------------------------------------------------
// checks if the context supports the required extensions
bool vtkLineIntegralConvolution2D::IsSupported(vtkRenderWindow *renWin)
{
vtkOpenGLRenderWindow *w=static_cast<vtkOpenGLRenderWindow *>(renWin);
// As we cannot figure out more accurately why the LIC algorithm does not
// work on OpenGL 2.1/DX9 GPU, we discriminate an OpenGL3.0/DX10 GPU
// (like a nVidia GeForce 8) against an OpenGL 2.1/DX9 GPU (like an nVidia
// GeForce 6) by testing for geometry shader support, even if we are not
// using any geometry shader in the LIC algorithm.
vtkOpenGLExtensionManager *e=w->GetExtensionManager();
bool supportGS=e->ExtensionSupported("GL_VERSION_3_0")==1 ||
e->ExtensionSupported("GL_ARB_geometry_shader4")==1 ||
e->ExtensionSupported("GL_EXT_geometry_shader4")==1;
return supportGS && vtkTextureObject::IsSupported(renWin) &&
vtkFrameBufferObject::IsSupported(renWin) &&
vtkShaderProgram2::IsSupported(w);
}
// ----------------------------------------------------------------------------
int vtkLineIntegralConvolution2D::Execute( unsigned int extent[4] )
{
// check the number of steps and step size
if ( this->NumberOfSteps <= 0 )
{
vtkErrorMacro( "Number of integration steps should be positive." );
return 0;
}
if ( this->LICStepSize <= 0.0 )
{
vtkErrorMacro( "Streamline integration step size should be positive." );
return 0;
}
vtkTimerLog * timer = vtkTimerLog::New();
timer->StartTimer();
int components[2];
components[0] = this->ComponentIds[0];
components[1] = this->ComponentIds[1];
if ( this->VectorField->GetComponents() < 2 )
{
vtkErrorMacro( "VectorField must have at least 2 components." );
timer->Delete();
timer = NULL;
return 0;
}
// check the number of vector components
if ( this->VectorField->GetComponents() == 2 )
{
// for 2 component textures (LA texture)
components[0] = 0;
components[1] = 3;
}
// given the two specified vector-compoment Ids, modify the source code of
// the associated fragment shader such that the shader program can extract
// the two target components from each 3D vector
const char componentNames[] = { 'x', 0x0, 'y', 0x0, 'z', 0x0, 'w', 0x0 };
std::string additionalKernel = ::vtkLineIntegralConvolution2DCode;
additionalKernel.replace( additionalKernel.find( '$' ), 1,
&componentNames[ 2 * components[0] ] );
additionalKernel.replace( additionalKernel.find( '$' ), 1,
&componentNames[ 2 * components[1] ] );
// size of the vector field (in number of pixels)
unsigned int inWidth = this->VectorField->GetWidth();
unsigned int inHeight = this->VectorField->GetHeight();
// Compute the transform for the vector field. This is a 2x2 diagonal matrix.
// Hence, we only pass the non-NULL diagonal values.
double vectorTransform[2] = { 1.0, 1.0 };
if ( this->TransformVectors )
{
vectorTransform[0] = 1.0 / ( inWidth * this->GridSpacings[0] );
vectorTransform[1] = 1.0 / ( inHeight * this->GridSpacings[1] );
}
vtkLICDebug( "vectorTransform: " << vectorTransform[0] << ", "
<< vectorTransform[1] );
// size of the output LIC image
unsigned int outWidth = ( extent[1] - extent[0] + 1 )
* static_cast<unsigned int>( this->Magnification );
unsigned int outHeight = ( extent[3] - extent[2] + 1 )
* static_cast<unsigned int>( this->Magnification );
// a sub-region of the input vector field that is determined by projection
double vTCoords[4];
vTCoords[0] = extent[0] / static_cast<double>( inWidth - 1 ); // xmin
vTCoords[1] = extent[1] / static_cast<double>( inWidth - 1 ); // xmax
vTCoords[2] = extent[2] / static_cast<double>( inHeight - 1 ); // xmin
vTCoords[3] = extent[3] / static_cast<double>( inHeight - 1 ); // xmax
// the resulting LIC texture, of which the whole [ 0.0, 1.0 ] x [ 0.0, 1.0 ],
// though physically matching only a sub-region of the input vector field, is
// always rendered
double licTCoords[4] = { 0.0, 1.0, 0.0, 1.0 };
// obtain the rendering context
vtkOpenGLRenderWindow * context =
vtkOpenGLRenderWindow::SafeDownCast( this->VectorField->GetContext() );
if ( !context->GetExtensionManager()->
LoadSupportedExtension( "GL_VERSION_1_3" ) )
{
vtkErrorMacro( "the required GL_VERSION_1_3 missing" );
timer->Delete();
timer = NULL;
context = NULL;
return 0;
}
// pair #0: a 2D texture that stores the positions where particles released
// from the fragments (streamline centers) 'currently' are during integration.
// Note that this texture is indexed for regular / non-center streamline
// points only because the fragments' texture coordinates themselves are just
// the initial positions of the streamline centers.
// ( r, g ) == ( s, t ) tcoords; ( b ) == not-used.
vtkTextureObject * tcords0 = vtkTextureObject::New();
tcords0->SetContext( context );
tcords0->Create2D( outWidth, outHeight, 3, VTK_FLOAT, false );
vtkLICDebug( "texture object tcords0 Id = " << tcords0->GetHandle() );
// pair #0: a 2D texture that stores the intermediate accumulated texture
// values (r, g, b) for the fragments (and it is the output texture upon the
// completion of the entire LIC process)
vtkTextureObject * licTex0 = vtkTextureObject::New();
licTex0->SetContext( context );
licTex0->Create2D( outWidth, outHeight, 3, VTK_FLOAT, false );
vtkLICDebug( "texture object licTex0 Id = " << licTex0->GetHandle() );
// pair #1: a 2D texture that stores the positions where particles released
// from the fragments (streamline centers) 'currently' are during integration.
// Note that this texture is indexed for regular / non-center streamline
// points only because the fragments' texture coordinates themselves are just
// the initial positions of the streamline centers.
// ( r, g ) == ( s, t ) tcoords; ( b ) == not-used.
vtkTextureObject * tcords1 = vtkTextureObject::New();
tcords1->SetContext( context );
tcords1->Create2D( outWidth, outHeight, 3, VTK_FLOAT, false );
vtkLICDebug( "texture object tcords1 Id = " << tcords1->GetHandle() );
// pair #1: a 2D texture that stores the intermediate accumulated texture
// values (r, g, b) for the fragments (and it is the output texture upon the
// completion of the entire LIC process)
vtkTextureObject * licTex1 = vtkTextureObject::New();
licTex1->SetContext( context );
licTex1->Create2D( outWidth, outHeight, 3, VTK_FLOAT, false );
vtkLICDebug( "texture object licTex1 Id = " << licTex1->GetHandle() );
// a 2D texture that stores the output of the high-pass filtering (invoked
// when enhanced LIC is desired)
vtkTextureObject * lhpfTex = vtkTextureObject::New();
lhpfTex->SetContext( context );
lhpfTex->Create2D( outWidth, outHeight, 3, VTK_FLOAT, false );
vtkLICDebug( "texture object lhpfTex Id = " << lhpfTex->GetHandle() );
// frame buffer object that maintains multiple color buffers (texture objects)
vtkFrameBufferObject * frameBufs = vtkFrameBufferObject::New();
frameBufs->SetDepthBufferNeeded( false );
frameBufs->SetContext( context );
frameBufs->SetColorBuffer( 0, licTex0 );
frameBufs->SetColorBuffer( 1, tcords0 );
frameBufs->SetColorBuffer( 2, licTex1 );
frameBufs->SetColorBuffer( 3, tcords1 );
frameBufs->SetColorBuffer( 4, lhpfTex );
frameBufs->SetNumberOfRenderTargets( 5 );
// the four color buffers (texture objects) constitute two pairs (licTex0 with
// tcords0 and licTex1 with tcords1), which work in a ping-pong fashion, with
// one pair as the read texture objects, via
// vtkgl::ActiveTexture( vtkgl::TEXTURE2 );
// frameBufs->GetColorBuffer( pairX[0] )->Bind();
// vtkgl::ActiveTexture( vtkgl::TEXTURE3 );
// frameBufs->GetColorBuffer( pairX[1] )->Bind();
//
// (note the input vector field and noise texture serve
// as vtkgl::TEXTURE0 and vtkgl::TEXTURE1, respectively)
//
// and the other pair as the write / render textures / targets, via
// frameBufs->SetActiveBuffers( 2, pairY )
unsigned int pair0[2] = { 0, 1 };
unsigned int pair1[2] = { 2, 3 };
unsigned int * pairs[2] = { pair0, pair1 };
// create a shader program invoking the fragment shaders
vtkShaderProgram2 * shaderProg = vtkShaderProgram2::New();
shaderProg->SetContext( context );
context = NULL;
// load the supporting fragment shader that contains utilitiy functions
vtkShader2 * utilities = vtkShader2::New();
utilities->SetContext( shaderProg->GetContext() );
utilities->SetType( VTK_SHADER_TYPE_FRAGMENT );
utilities->SetSourceCode( vtkLineIntegralConvolution2D_fs );
shaderProg->GetShaders()->AddItem( utilities );
utilities->Delete();
// load the supporting fragment shader program that tells which two
// components are needed from each 3D vector
vtkShader2 * selectComps = vtkShader2::New();
selectComps->SetContext( shaderProg->GetContext() );
selectComps->SetType( VTK_SHADER_TYPE_FRAGMENT );
selectComps->SetSourceCode( additionalKernel.c_str() );
shaderProg->GetShaders()->AddItem( selectComps );
selectComps->Delete();
// load the fragment shader program that implements the LIC process
vtkShader2 * glslFS1 = vtkShader2::New();
glslFS1->SetContext( shaderProg->GetContext() );
glslFS1->SetType( VTK_SHADER_TYPE_FRAGMENT );
glslFS1->SetSourceCode( vtkLineIntegralConvolution2D_fs1 );
// load the fragment shader program that implements high-pass filtering
vtkShader2 * glslFS2 = vtkShader2::New();
glslFS2->SetContext( shaderProg->GetContext() );
glslFS2->SetType( VTK_SHADER_TYPE_FRAGMENT );
glslFS2->SetSourceCode( vtkLineIntegralConvolution2D_fs2 );
// build the LIC fragment shader
vtkLICDebug( "building the LIC fragment shader (pass #1)" );
shaderProg->GetShaders()->AddItem( glslFS1 );
shaderProg->Build();
if ( shaderProg->GetLastBuildStatus() != VTK_SHADER_PROGRAM2_LINK_SUCCEEDED )
{
vtkErrorMacro( "error with building the LIC fragment shader (pass #1)" );
return 0;
}
vtkLICDebug( "the LIC fragment shader (pass #1) built" );
// input texture #0: the vector field, bound as TEXTURE0
vtkgl::ActiveTexture( vtkgl::TEXTURE0 );
this->VectorField->Bind();
glTexParameteri( this->VectorField->GetTarget(),
GL_TEXTURE_MIN_FILTER, GL_LINEAR );
glTexParameteri( this->VectorField->GetTarget(),
GL_TEXTURE_MAG_FILTER, GL_LINEAR );
vtkLICDebug( "texture object vectorField Id="
<< this->VectorField->GetHandle() );
// input texture #1: the noise texture, bound as TEXTURE1
vtkgl::ActiveTexture( vtkgl::TEXTURE1 );
this->Noise->Bind();
vtkLICDebug( "texture object Noise Id = " << this->Noise->GetHandle() );
// determine the noise scale factor that allows for the use of a noise texture
// smaller than the input vector field and the output image
double noiseScale[2] = { 1.0, 1.0 };
noiseScale[0] = this->Magnification * this->VectorField->GetWidth() /
static_cast<double>( this->Noise->GetWidth() );
noiseScale[1] = this->Magnification * this->VectorField->GetHeight() /
static_cast<double>( this->Noise->GetHeight() );
vtkLICDebug( "noiseScale: " << noiseScale[0] << ", " << noiseScale[1] );
// set the parameters for the LIC fragment shader
int value;
float fvalues[2];
value = this->LICForSurface;
shaderProg->GetUniformVariables()->SetUniformi( "uSurfaced", 1, &value );
value = 1 - this->EnhancedLIC; // it is the last one if EnancedLIC is OFF
shaderProg->GetUniformVariables()->SetUniformi( "uLastPass", 1,&value );
value = 0;
shaderProg->GetUniformVariables()->SetUniformi( "uMaskType", 1, &value );
value = this->NumberOfSteps;
shaderProg->GetUniformVariables()->SetUniformi( "uNumSteps", 1, &value );
fvalues[0] = static_cast<float>( this->LICStepSize );
shaderProg->GetUniformVariables()->SetUniformf( "uStepSize", 1, fvalues );
fvalues[0] = static_cast<float>( this->VectorShift );
fvalues[1] = static_cast<float>( this->VectorScale );
shaderProg->GetUniformVariables()->SetUniformf
( "uVectorShiftScale", 2, fvalues );
fvalues[0] = static_cast<float>( noiseScale[0] );
fvalues[1] = static_cast<float>( noiseScale[1] );
shaderProg->GetUniformVariables()->SetUniformf
( "uNoise2VecScaling", 2, fvalues );
fvalues[0] = static_cast<float>( vectorTransform[0] );
fvalues[1] = static_cast<float>( vectorTransform[1] );
shaderProg->GetUniformVariables()->SetUniformf
( "uVectorTransform2", 2, fvalues );
float vtCordRange[4];
vtCordRange[0] = static_cast<float> ( vTCoords[0] );
vtCordRange[1] = static_cast<float> ( vTCoords[1] );
vtCordRange[2] = static_cast<float> ( vTCoords[2] );
vtCordRange[3] = static_cast<float> ( vTCoords[3] );
shaderProg->GetUniformVariables()->SetUniformf
( "uVTCordRenderBBox", 4, vtCordRange );
value = 0;
shaderProg->GetUniformVariables()->SetUniformi
( "uNTCordShiftScale", 1, &value );
// Declare the first two input texture objects of the fragment shader by
// specifying their names referenced in the shader.
// These two texture objects correspond to this->VectorField (bound to
// vtkgl::TEXTURE0) and this->Noise (bound to vtkgl::TEXTURE1), respectively.
value = 0;
shaderProg->GetUniformVariables()->SetUniformi( "texVectorField", 1, &value );
value = 1;
shaderProg->GetUniformVariables()->SetUniformi( "texNoise", 1, &value );
// Declare the last two input texture objects of the fragment shader by
// specifying their names referenced in the shader.
// Note that these two texture objects are dynamically determind and bound
// (to vtkgl::TEXTURE2 and vtkgl::TEXTURE3, respectively, below) as the two
// pairs of color buffers (tcords0 with licTex0 and tcords1 with licTex1)
// work in a ping-pong manner during the LIC process.
value = 2;
shaderProg->GetUniformVariables()->SetUniformi( "texLIC", 1, &value );
value = 3;
shaderProg->GetUniformVariables()->SetUniformi( "texTCoords", 1,&value );
shaderProg->Use();
int readIndex = 0; // index of the pair used as the read buffers
unsigned int * readBuffs = NULL;
unsigned int * writeBufs = NULL;
for ( int direction = 0; direction < 2; direction ++ )
{
// NOTE: this->NumberOfSteps + 1 is used below beause the streamline center
// point is actually visited two times (due to the outer loop),
// one per integration direction. Thus ( this->NumberOfSteps + 1 ) *
// 2 visits access ( this->NumberOfSteps + 1 ) * 2 - 1 = 2 * this->
// NumberOfSteps + 1 unique streamline points.
//
// The associated fragment shader addresses this issue by asking
// each center-visit to contribute half the texture value.
for ( int stepIdx = 0; stepIdx < this->NumberOfSteps + 1; stepIdx ++ )
{
// determine the pair of color buffers, among the four of the frame
// buffer object, used as the input and the one used as the output
readIndex = ( stepIdx % 2 );
readBuffs = pairs[ readIndex ];
writeBufs = pairs[ 1 - readIndex ];
// specify the 2D texture that stores the intermediate accumulated
// texture values (r, g, b) for the fragments
vtkgl::ActiveTexture( vtkgl::TEXTURE2 );
vtkTextureObject * accumLIC = frameBufs->GetColorBuffer( readBuffs[0] );
accumLIC->Bind();
vtkLICDebug( "accumLIC: " << accumLIC->GetHandle() );
accumLIC = NULL;
// Specify the 2D texture that stores the positions where particles
// released from the fragments (streamline centers) 'currently' are.
// Note this texture is indexed for regular / non-center streamline
// points only because the fragments' texture coordinates themselves
// are just the initial positions of the streamline centers.
// ( r, g ) == ( s, t ) tcoords; ( b ) == not-used.
vtkgl::ActiveTexture( vtkgl::TEXTURE3 );
vtkTextureObject * dynaTcords = frameBufs->GetColorBuffer( readBuffs[1] );
dynaTcords->Bind();
vtkLICDebug( "dynaTcords: " << dynaTcords->GetHandle() );
dynaTcords = NULL;
// specify the pair of texture objects as the render targets
frameBufs->SetActiveBuffers( 2, writeBufs );
if ( !frameBufs->Start( outWidth, outHeight, false ) )
{
shaderProg->GetShaders()->RemoveItem( glslFS1 );
shaderProg->GetShaders()->RemoveItem( utilities );
shaderProg->GetShaders()->RemoveItem( selectComps );
glslFS1->ReleaseGraphicsResources();
glslFS2->ReleaseGraphicsResources();
utilities->ReleaseGraphicsResources();
selectComps->ReleaseGraphicsResources();
shaderProg->ReleaseGraphicsResources();
glslFS1->Delete();
glslFS2->Delete();
shaderProg->Delete();
frameBufs->Delete();
tcords0->Delete();
tcords1->Delete();
licTex0->Delete();
licTex1->Delete();
lhpfTex->Delete();
timer->Delete();
glslFS1 = NULL;
glslFS2 = NULL;
utilities = NULL;
selectComps= NULL;
shaderProg = NULL;
frameBufs = NULL;
tcords0 = NULL;
tcords1 = NULL;
licTex0 = NULL;
licTex1 = NULL;
lhpfTex = NULL;
timer = NULL;
readBuffs = NULL;
writeBufs = NULL;
pairs[0] = NULL;
pairs[1] = NULL;
return 0;
}
vtkLICDebug( "active render buffers Ids: " << writeBufs[0] << ", "
<< writeBufs[1] << " for step #" << stepIdx );
// streamline integration direction: negative (-1) and positive (1)
value = ( direction << 1 ) - 1;
shaderProg->GetUniformVariables()->SetUniformi( "uStepSign", 1, &value );
// step type (0, 1, 2)
// 0: first access to the streamline center point
// 1: access to a regular / non-center streamline point
// 2: second access to the streamline center point
// (due to a change in the streamline integration direction)
value = 1 + ( !stepIdx ) * ( ( direction << 1 ) - 1 );
shaderProg->GetUniformVariables()->SetUniformi( "uStepType", 1, &value );
// zero-vector fragment masking
// 0: retain the white noise texture value by storing the negated version
// 1: export ( -1.0, -1.0, -1.0, -1.0 ) for use by vtkSurfaceLICPainter
// to make this LIC fragment totally transparent to show the underlying
// geometry surface
//
// a zero-vector fragment is always masked with ( -1.0, -1.0, -1.0, -1.0)
// IF we need a basic LIC image (instead of an improved one) for display
value = int( ( direction == 1 ) && ( stepIdx == this->NumberOfSteps ) &&
( this->EnhancedLIC == 0 )
);
shaderProg->GetUniformVariables()->SetUniformi( "uMaskType", 1, &value );
shaderProg->SendUniforms(); // force resending uniforms
if( !shaderProg->IsValid() )
{
vtkErrorMacro( << " validation of the program failed: "
<< shaderProg->GetLastValidateLog() );
}
RENDERQUAD
}
}
if ( this->EnhancedLIC )
{
// --------------------------------------------- begin high-pass filtering
// perform Laplacian high-pass filtering using a fragment shader
shaderProg->Restore();
vtkLICDebug( "unbinding the LIC fragment shader (pass #1) ... " );
shaderProg->GetShaders()->RemoveItem( glslFS1 );
shaderProg->GetShaders()->AddItem( glslFS2 );
vtkLICDebug( "building the high-pass filtering shader ... " );
shaderProg->Build();
if( shaderProg->GetLastBuildStatus() != VTK_SHADER_PROGRAM2_LINK_SUCCEEDED )
{
vtkErrorMacro( "error with bulding the high-pass filtering shader" );
return 0;
}
// set parameters for the high-pass filtering shader and declare the only one
// input texture by specifying its name referenced in the shader
value = 0;
float licWidth = static_cast<float>( outWidth );
float licHeight = static_cast<float>( outHeight );
shaderProg->GetUniformVariables()->SetUniformi( "licTexture", 1, &value );
shaderProg->GetUniformVariables()->SetUniformf( "uLicTexWid", 1, &licWidth );
shaderProg->GetUniformVariables()->SetUniformf( "uLicTexHgt", 1, &licHeight );
// determine the read and write / render textures for the high-pass filter
unsigned int filterReadIdx = writeBufs[0]; // the output of pass #1 LIC
unsigned int filterWriteId = 4; // texture object lhpfTex
// bind the input texture to the filter
vtkgl::ActiveTexture( vtkgl::TEXTURE0 );
vtkTextureObject * licImage = frameBufs->GetColorBuffer( filterReadIdx );
licImage->Bind();
licImage = NULL;
// set the output texture of the filter as the active one of the FBO
vtkLICDebug( "active render buffer Id: " << filterWriteId );
frameBufs->SetActiveBuffers( 1, &filterWriteId );
if ( !frameBufs->Start( outWidth, outHeight, false ) )
{
shaderProg->GetShaders()->RemoveItem( glslFS2 );
shaderProg->GetShaders()->RemoveItem( utilities );
shaderProg->GetShaders()->RemoveItem( selectComps );
glslFS1->ReleaseGraphicsResources();
glslFS2->ReleaseGraphicsResources();
utilities->ReleaseGraphicsResources();
selectComps->ReleaseGraphicsResources();
shaderProg->ReleaseGraphicsResources();
glslFS1->Delete();
glslFS2->Delete();
shaderProg->Delete();
frameBufs->Delete();
tcords0->Delete();
tcords1->Delete();
licTex0->Delete();
licTex1->Delete();
lhpfTex->Delete();
timer->Delete();
glslFS1 = NULL;
glslFS2 = NULL;
utilities = NULL;
selectComps= NULL;
shaderProg = NULL;
frameBufs = NULL;
tcords0 = NULL;
tcords1 = NULL;
licTex0 = NULL;
licTex1 = NULL;
lhpfTex = NULL;
timer = NULL;
readBuffs = NULL;
writeBufs = NULL;
pairs[0] = NULL;
pairs[1] = NULL;
return 0;
}
shaderProg->Use();
if( !shaderProg->IsValid() )
{
vtkErrorMacro( "error validating the high-pass filtering shader "
<< shaderProg->GetLastValidateLog() );
}
// invoke the high-pass filter by rendering the quad
RENDERQUAD
// --------------------------------------------- end high-pass filtering
// --------------------------------------------- begin second-pass LIC
shaderProg->Restore();
vtkLICDebug( "unbinding the high-pass filtering shader ... " );
shaderProg->GetShaders()->RemoveItem( glslFS2 );
shaderProg->GetShaders()->AddItem( glslFS1 );
vtkLICDebug( "building the LIC fragment shader (pass #2) ... " );
shaderProg->Build();
if( shaderProg->GetLastBuildStatus() != VTK_SHADER_PROGRAM2_LINK_SUCCEEDED )
{
vtkErrorMacro( "error with bulding the LIC fragment shader (pass #2)" );
return 0;
}
// this is the last pass of LIC (for non-suraceLIC, make sure the output
// pixel values are all positive since neither high-pass filtering nor
// geometry-LIC compositing is performed at all)
value = 1;
shaderProg->GetUniformVariables()->SetUniformi( "uLastPass", 1,&value );
// As pass #1 LIC has constructed the basic flow pattern (the tangential
// flow streaks have been curved 'out') and then the high-pass filter has
// even enhanced it, pass #2 LIC can save some integration steps and instead
// is focused on smoothing away those noisy components (those excessively
// contrasted fragments).
int lic2Steps = this->NumberOfSteps / 2;
shaderProg->GetUniformVariables()->SetUniformi( "uNumSteps", 1, &lic2Steps );
// When the output of pass #1 LIC is high-pass filtered and then forwarded
// to pass #2 LIC as the input 'noise', the size of this 'noise' texture
// (uVTCordRenderBBox) is equal to the current extent of the vector
// field (vTCoords[4]) times this->Magnification. Since noiseScale (or
// uNoise2VecScaling) involves this->Magnification and hence the value of
// uNoise2VecScaling for pass #2 LIC is just vec2(1.0, 1.0) AS LONG AS we
// take this 'noise' texture as an extent (uVTCordRenderBBox = vTCoords[4])
// of the virtual full 'noise' texture (for which the out-of-extent part
// is just not defined / provided by the output of the high-pass filter ---
// 'virtual'). To compensate for the effect of the 'extent', the vector
// field-based noise texture coordinate needs to be shifted and scaled in
// vtkLineIntegralConvolution2D_fs.glsl::getNoiseColor() to index this
// 'noise' texture (an extent of the virtual full 'noise' texture) properly.
fvalues[0] = 1.0;
fvalues[1] = 1.0;
shaderProg->GetUniformVariables()->SetUniformf( "uNoise2VecScaling", 2, fvalues );
value = 1;
shaderProg->GetUniformVariables()->SetUniformi( "uNTCordShiftScale", 1, &value );
shaderProg->SendUniforms();
// bind the vector field as an input texture
vtkgl::ActiveTexture( vtkgl::TEXTURE0 );
this->VectorField->Bind();
// replace the original white noise texture with a new 'noise' texture (the
// output generated by high-pass filtering pass #1 LIC image) and bind it
vtkgl::ActiveTexture( vtkgl::TEXTURE1 );
this->Noise->UnBind();
vtkTextureObject * tempTex = frameBufs->GetColorBuffer( 4 );
tempTex->Bind();
tempTex = NULL;
shaderProg->Use();
for ( int direction = 0; direction < 2; direction ++ )
{
// NOTE: lic2Steps + 1 is used below beause the streamline center point
// is actually visited two times (due to the outer loop), one per
// integration direction. Thus ( lic2Steps + 1 ) * 2 visits access
// ( lic2Steps + 1 ) * 2 - 1 = 2 * lic2Steps + 1 unique streamline
// points.
//
// The associated fragment shader addresses this issue by asking
// each center-visit to contribute half the texture value.
for ( int stepIdx = 0; stepIdx < lic2Steps + 1; stepIdx ++ )
{
// determine the pair of color buffers, among the four of the frame
// buffer object, used as the input and the one used as the output
readIndex = ( stepIdx % 2 );
readBuffs = pairs[ readIndex ];
writeBufs = pairs[ 1 - readIndex ];
// specify the 2D texture that stores the intermediate accumulated
// texture values (r, g, b) for the fragments and bind it as an input
vtkgl::ActiveTexture( vtkgl::TEXTURE2 );
vtkTextureObject * accumLIC = frameBufs->GetColorBuffer( readBuffs[0] );
accumLIC->Bind();
vtkLICDebug( "accumLIC: " << accumLIC->GetHandle() );
accumLIC = NULL;
// Specify the 2D texture that stores the positions where particles
// released from the fragments (streamline centers) 'currently' are.
// Note this texture is indexed for regular / non-center streamline
// points only because the fragments' texture coordinates themselves
// are just the initial positions of the streamline centers.
// (r, g) == (s, t) tcoords; (b) == not-used.
vtkgl::ActiveTexture( vtkgl::TEXTURE3 );
vtkTextureObject * dynaTcords = frameBufs->GetColorBuffer( readBuffs[1] );
dynaTcords->Bind();
vtkLICDebug( "dynaTcords: " << dynaTcords->GetHandle() );
dynaTcords = NULL;
// specify the pair of texture objects as the render targets
frameBufs->SetActiveBuffers( 2, writeBufs );
if ( !frameBufs->Start( outWidth, outHeight, false ) )
{
shaderProg->GetShaders()->RemoveItem( glslFS1 );
shaderProg->GetShaders()->RemoveItem( utilities );
shaderProg->GetShaders()->RemoveItem( selectComps );
glslFS1->ReleaseGraphicsResources();
glslFS2->ReleaseGraphicsResources();
utilities->ReleaseGraphicsResources();
selectComps->ReleaseGraphicsResources();
shaderProg->ReleaseGraphicsResources();
glslFS1->Delete();
glslFS2->Delete();
shaderProg->Delete();
frameBufs->Delete();
tcords0->Delete();
tcords1->Delete();
licTex0->Delete();
licTex1->Delete();
lhpfTex->Delete();
timer->Delete();
glslFS1 = NULL;
glslFS2 = NULL;
utilities = NULL;
selectComps= NULL;
shaderProg = NULL;
frameBufs = NULL;
tcords0 = NULL;
tcords1 = NULL;
licTex0 = NULL;
licTex1 = NULL;
lhpfTex = NULL;
timer = NULL;
readBuffs = NULL;
writeBufs = NULL;
pairs[0] = NULL;
pairs[1] = NULL;
return 0;
}
vtkLICDebug( "active render buffers Ids: " << writeBufs[0] << ", "
<< writeBufs[1] << " for step #" << stepIdx );
// streamline integration direction: negative (-1) and positive (1)
value = ( direction << 1 ) - 1;
shaderProg->GetUniformVariables()->SetUniformi( "uStepSign", 1, &value );
// step type (0, 1, 2)
// 0: first access to the streamline center point
// 1: access to a regular / non-center streamline point
// 2: second access to the streamline center point
// (due to a change in the streamline integration direction)
value = 1 + ( !stepIdx ) * ( ( direction << 1 ) - 1 );
shaderProg->GetUniformVariables()->SetUniformi( "uStepType", 1, &value );
// zero-vector fragment masking
// 0: retain the white noise texture value by storing the negated version
// 1: export ( -1.0, -1.0, -1.0, -1.0 ) for use by vtkSurfaceLICPainter
// to make this LIC fragment totally transparent to show the underlying
// geometry surface
value = int( ( direction == 1 ) && ( stepIdx == lic2Steps ) );
shaderProg->GetUniformVariables()->SetUniformi( "uMaskType", 1, &value );
shaderProg->SendUniforms(); // force resending uniforms
if ( !shaderProg->IsValid() )
{
vtkErrorMacro( << " validation of the program failed: "
<< shaderProg->GetLastValidateLog() );
}
RENDERQUAD
}
}
// --------------------------------------------- end second-pass LIC
}
glFinish();
timer->StopTimer();
shaderProg->Restore();
vtkLICDebug( "Exec Time: " << timer->GetElapsedTime() );
timer->Delete();
timer = NULL;
// obtain the LIC image, either basic LIC or enhanced LIC
this->LIC = frameBufs->GetColorBuffer( writeBufs[0] ); // accept one licTex
frameBufs->GetColorBuffer( readBuffs[0] )->Delete(); // free other licTex
// memory deallocation (NOTE: do not deallocate licTex0 and licTex1 below
// since one is deallocated above and the other is deallocated via this->
// LIC upon the destruction of this class)
glslFS1->ReleaseGraphicsResources();
glslFS2->ReleaseGraphicsResources();
utilities->ReleaseGraphicsResources();
selectComps->ReleaseGraphicsResources();
shaderProg->ReleaseGraphicsResources();
glslFS1->Delete();
glslFS2->Delete();
shaderProg->Delete();
frameBufs->Delete();
tcords0->Delete();
tcords1->Delete();
lhpfTex->Delete();
glslFS1 = NULL;
glslFS2 = NULL;
utilities = NULL;
selectComps= NULL;
shaderProg = NULL;
frameBufs = NULL;
tcords0 = NULL;
tcords1 = NULL;
licTex0 = NULL;
licTex1 = NULL;
lhpfTex = NULL;
readBuffs = NULL;
writeBufs = NULL;
return 1;
}
//-----------------------------------------------------------------------------
void vtkLineIntegralConvolution2D::PrintSelf( ostream & os, vtkIndent indent )
{
this->Superclass::PrintSelf( os, indent );
os << indent << "LIC: " << this->LIC << "\n";
os << indent << "Noise: " << this->Noise << "\n";
os << indent << "VectorField: " << this->VectorField << "\n";
os << indent << "EnahncedLIC: " << this->EnhancedLIC << "\n";
os << indent << "LICStepSize: " << this->LICStepSize << "\n";
os << indent << "VectorShift: " << this->VectorShift << "\n";
os << indent << "VectorScale: " << this->VectorScale << "\n";
os << indent << "Magnification: " << this->Magnification << "\n";
os << indent << "NumberOfSteps: " << this->NumberOfSteps << "\n";
os << indent << "ComponentIds: " << this->ComponentIds[0] << ", "
<< this->ComponentIds[1] << "\n";
os << indent << "GridSpacings: " << this->GridSpacings[0] << ", "
<< this->GridSpacings[1] << "\n";
os << indent << "LICForSurface: " << this->LICForSurface << "\n";
os << indent << "TransformVectors: " << this->TransformVectors << "\n";
}
|