1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
|
module ConjugateGradient
use SparseMatrix
#ifdef USE_CATALYST
use CoProcessor
#endif
implicit none
private :: dotproduct
public :: solve
contains
real(kind=8) function dotproduct(sm, a, b)
type(SparseMatrixData), intent(inout) :: sm
integer :: i
real(kind=8), intent(in) :: a(:), b(:)
real(kind=8) :: value
value = 0.d0
do i=1, sm%globalsize
value = value + a(i)*b(i)
enddo
dotproduct = value
end function dotproduct
subroutine solve(dimensions, sm, x, rhs)
type(SparseMatrixData), intent(inout) :: sm
integer, intent(in) :: dimensions(3)
real(kind=8), intent(in) :: rhs(:)
real(kind=8), intent(inout) :: x(:)
integer :: k, i
real(kind=8) :: alpha, beta, rdotproduct, rnewdotproduct, sqrtorigresid
real(kind=8), DIMENSION(:), allocatable :: r(:), p(:), ap(:)
allocate(r(sm%globalsize), p(sm%globalsize), ap(sm%globalsize))
#ifdef USE_CATALYST
x(:) = 0.d0
call runcoprocessor(dimensions, 0, 0.d0, x)
#endif
r(:) = rhs(:)
p(:) = rhs(:)
k = 1
rdotproduct = dotproduct(sm, r, r)
sqrtorigresid = sqrt(rdotproduct)
do while(k .le. sm%globalsize .and. sqrt(rdotproduct) .gt. sqrtorigresid*0.000001d0)
call matvec(sm, p, ap)
alpha = rdotproduct/dotproduct(sm, ap, p)
x(:) = x(:) + alpha*p(:)
r(:) = r(:) - alpha*ap(:)
rnewdotproduct = dotproduct(sm, r, r)
beta = rnewdotproduct/rdotproduct
p(:) = r(:) + beta*p(:)
rdotproduct = rnewdotproduct
!write(*,*) 'on iteration ', k, sqrtorigresid, sqrt(rdotproduct), alpha
#ifdef USE_CATALYST
call runcoprocessor(dimensions, k, k*1.d0, x)
#endif
k = k+1
end do
deallocate(r, p, ap)
end subroutine solve
end module ConjugateGradient
|