File: vtkPVLightingHelper_s.glsl

package info (click to toggle)
paraview 5.1.2%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 221,108 kB
  • ctags: 236,092
  • sloc: cpp: 2,416,026; ansic: 190,891; python: 99,856; xml: 81,001; tcl: 46,915; yacc: 5,039; java: 4,413; perl: 3,108; sh: 1,974; lex: 1,926; f90: 748; asm: 471; pascal: 228; makefile: 198; objc: 83; fortran: 31
file content (189 lines) | stat: -rw-r--r-- 5,730 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
//=========================================================================
//
//  Program:   ParaView
//  Module:    vtkPVLightingHelper_s.glsl
//
//  Copyright (c) Kitware, Inc.
//  All rights reserved.
//  See Copyright.txt or http://www.paraview.org/HTML/Copyright.html for details.
//
//     This software is distributed WITHOUT ANY WARRANTY; without even
//     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
//     PURPOSE.  See the above copyright notice for more information.
//
//=========================================================================
// Filename: vtkPVLighting.glsl
// Filename is useful when using gldb-gui

// This file defines some lighting functions.
// They can be used either in a vertex or fragment shader.

// It is intented to be used in conjunction with vtkPVLightsSwitches class.

// Those functions expect uniform variables about the status of lights
// 1. In fixed-mode pipeline (glUseProgram(0)),
// 2. get the values with GLboolean lightSwitch[i]=glIsEnabled(GL_LIGHTi);
// 3. Switch to programmable pipeline (glUseProgram(prog))
// 4. Send boolean as uniform: var=glGetUniformLocation(prog,"lightSwitch[i]");
// 5. glUniform1i(var,lightSwitch[i]);

// vtkPVLightsSwitches class can do that for you.


// Example in vertex shader:
// Reminder: two-sided/one-sided is controlled by GL_VERTEX_PROGRAM_TWO_SIDE
//
// vec4 eyeCoords=gl_ModelViewMatrix*gl_Vertex;
// vec4 n=gl_Normalmatrix*gl_Normal;
// n=normalize(n);
// separateSpecularColor(gl_FrontMaterial,eyeCoords,n,gl_FrontColor,gl_FrontSecondaryColor);
 // If two-sided.
// separateSpecularColor(gl_BackMaterial,eyeCoords,n,gl_BackColor,gl_BackSecondaryColor);

 // Typical:
// gl_FrontColor=singleColor(gl_FrontMaterial,eyeCoords,n);

// This is convenience method to use in shader but you better do
// this computation on the CPU and send the result as a uniform.

// True if any enabled light is a positional one.
bool needSurfacePositionInEyeCoordinates()
{
  bool result=false;
  for (int i=0; !result && (i < gl_MaxLights); i++)
    {
    result = (gl_LightSource[i].diffuse.w != 0.0) && 
      (gl_LightSource[i].position.w != 0.0);
    }

  return result;
}

// Lighting computation based on a material m,
// a position on the surface expressed in eye coordinate (typically a vertex
//  position in a vertex shader, something interpolated in a fragment shader),
// a unit normal `n' to the surface in eye coordinates.
// Most of the components are in cpri (primary color), the specular
// component is in csec (secondary color).
// Useful for blending color and textures.
void separateSpecularColor(gl_MaterialParameters m,
                           vec3 surfacePosEyeCoords,
                           vec3 n,
                           out vec4 cpri,
                           out vec4 csec)
{
  cpri = m.emission + m.ambient * gl_LightModel.ambient; // ecm+acm*acs
  csec = vec4(0.0,0.0,0.0,1.0);
  vec3 wReverseRayDir = surfacePosEyeCoords;

  // For each light,
  for (int i=0; i < gl_MaxLights; i++)
    {
    // Trick.
    bool lightEnabled = (gl_LightSource[i].diffuse.w != 0.0);
    if (!lightEnabled)
      {
      continue;
      }

    vec3 lightPos;
    vec3 ldir;
    vec3 h;
    float att;
    float spot;
    float shininessFactor;

    if (gl_LightSource[i].position.w != 0.0)
      {
      // ldir=light direction
      ldir = lightPos - surfacePosEyeCoords;
      float sqrDistance = dot(ldir,ldir);
      ldir = normalize(ldir);
      h = normalize(ldir + wReverseRayDir);
      att = 1.0 / (gl_LightSource[i].constantAttenuation + gl_LightSource[i].linearAttenuation * 
        sqrt(sqrDistance) + gl_LightSource[i].quadraticAttenuation * sqrDistance);
      }
    else
      {
      att = 1.0;
      ldir = gl_LightSource[i].position.xyz;
      ldir = normalize(ldir);
      h = normalize(ldir + wReverseRayDir);
      }

    if (att>0.0)
      {
      if (gl_LightSource[i].spotCutoff == 180.0)
        {
        spot = 1.0;
        }
      else
        {
        float coef=-dot(ldir,gl_LightSource[i].spotDirection);
        if (coef>=gl_LightSource[i].spotCosCutoff)
          {
          spot=pow(coef,gl_LightSource[i].spotExponent);
          }
        else
          {
          spot=0.0;
          }
        }
      if (spot>0.0)
        {
        // LIT operation...
        float nDotL=dot(n,ldir);
        float nDotH=dot(n,h);

        // separate nDotL and nDotH for two-sided shading, otherwise we
        // get black spots.

        if (nDotL<0.0) // two-sided shading
          {
          nDotL=-nDotL;
          }

        if (nDotH<0.0) // two-sided shading
          {
          nDotH=-nDotH;
          }
        // ambient term for this light
        vec4 cpril=m.ambient*gl_LightSource[i].ambient;// acm*adi

        // diffuse term for this light
        if (nDotL>0.0)
          {
          cpril+=m.diffuse*gl_LightSource[i].diffuse*nDotL; // dcm*dcli
          }

        // specular term for this light
        shininessFactor=pow(nDotH,m.shininess); // srm

        cpri+=att*spot*cpril;

        // scm*scli
        csec+=att*spot*
          m.specular*gl_LightSource[i].specular*shininessFactor;

        }
      }
    }
}


// Lighting computation based on a material m,
// a position on the surface expressed in eye coordinate (typically a vertex
//  position in a vertex shader, something interpolated in a fragment shader),
// a unit normal to the surface in eye coordinates.
// The result includes the specular component.
vec4 singleColor(gl_MaterialParameters m,
                 vec3 surfacePosEyeCoords,
                 vec3 n)
{
 vec4 cpri;
 vec4 csec;
 separateSpecularColor(m,surfacePosEyeCoords,n,cpri,csec);
 return cpri+csec;
}