1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
// A simple example that demonstrate how to use the vtkIceTCompositePass and
// supporting classes to render a sphere in parallel.
// This only uses the minimal set of functionality and hence does not support
// opacity < 1.0. Refer to TestIceTCompositePass.cxx for a more exhaustive
// example.
#include "vtkActor.h"
#include "vtkCamera.h"
#include "vtkCameraPass.h"
#include "vtkIceTCompositePass.h"
#include "vtkLightsPass.h"
#include "vtkMPIController.h"
#include "vtkOpaquePass.h"
#include "vtkPieceScalars.h"
#include "vtkPolyDataMapper.h"
#include "vtkPSphereSource.h"
#include "vtkRegressionTestImage.h"
#include "vtkRenderer.h"
#include "vtkOpenGLRenderer.h"
#include "vtkRenderPassCollection.h"
#include "vtkRenderWindow.h"
#include "vtkRenderWindowInteractor.h"
#include "vtkSequencePass.h"
#include "vtkSmartPointer.h"
#include "vtkSynchronizedRenderers.h"
#include "vtkSynchronizedRenderWindows.h"
#include "vtkTesting.h"
#include "mpi.h"
int main(int argc, char**argv)
{
//---------------------------------------------------------------------------
// Initialize MPI.
// This is here to avoid false leak messages from vtkDebugLeaks when
// using mpich. It appears that the root process which spawns all the
// main processes waits in MPI_Init() and calls exit() when
// the others are done, causing apparent memory leaks for any objects
// created before MPI_Init().
MPI_Init(&argc, &argv);
vtkSmartPointer<vtkMPIController> controller =
vtkSmartPointer<vtkMPIController>::New();
controller->Initialize(&argc, &argv, 1);
// Get information about the group of processes involved.
int my_id = controller->GetLocalProcessId();
int num_procs = controller->GetNumberOfProcesses();
int retVal = vtkTesting::PASSED;
// This block ensures that controller is released by all filters before we
// reach the end to avoid leaks
if (true)
{
//---------------------------------------------------------------------------
// Create Visualization Pipeline.
// This code is common to all processes.
vtkSmartPointer<vtkPSphereSource> sphere = vtkSmartPointer<vtkPSphereSource>::New();
sphere->SetThetaResolution(50);
sphere->SetPhiResolution(50);
// Gives separate colors for each process. Just makes it easier to see how the
// data is distributed among processes.
vtkSmartPointer<vtkPieceScalars> piecescalars =
vtkSmartPointer<vtkPieceScalars>::New();
piecescalars->SetInputConnection(sphere->GetOutputPort());
piecescalars->SetScalarModeToCellData();
vtkSmartPointer<vtkPolyDataMapper> mapper = vtkSmartPointer<vtkPolyDataMapper>::New();
mapper->SetInputConnection(piecescalars->GetOutputPort());
mapper->SetScalarModeToUseCellFieldData();
mapper->SelectColorArray("Piece");
mapper->SetScalarRange(0, num_procs-1);
// This sets up the piece-request. This tells vtkPSphereSource to only
// generate part of the data on this processes.
mapper->SetPiece(my_id);
mapper->SetNumberOfPieces(num_procs);
vtkSmartPointer<vtkActor> actor = vtkSmartPointer<vtkActor>::New();
actor->SetMapper(mapper);
vtkSmartPointer<vtkRenderer> renderer = vtkSmartPointer<vtkRenderer>::New();
renderer->AddActor(actor);
vtkSmartPointer<vtkRenderWindow> renWin = vtkSmartPointer<vtkRenderWindow>::New();
renWin->AddRenderer(renderer);
// 400x400 windows, +24 in y to avoid gnome menu bar.
renWin->SetPosition(my_id * 410, 0);
renWin->SetSize(400, 400);
//---------------------------------------------------------------------------
// Setup the render passes. This is just a very small subset of necessary
// render passes needed to render a opaque sphere.
vtkSmartPointer<vtkCameraPass> cameraP = vtkSmartPointer<vtkCameraPass>::New();
vtkSmartPointer<vtkSequencePass> seq = vtkSmartPointer<vtkSequencePass>::New();
vtkSmartPointer<vtkOpaquePass> opaque = vtkSmartPointer<vtkOpaquePass>::New();
vtkSmartPointer<vtkLightsPass> lights = vtkSmartPointer<vtkLightsPass>::New();
vtkSmartPointer<vtkRenderPassCollection> passes =
vtkSmartPointer<vtkRenderPassCollection>::New();
passes->AddItem(lights);
passes->AddItem(opaque);
seq->SetPasses(passes);
// Each processes only has part of the data, so each process will render only
// part of the data. To ensure that root node gets a composited result (or in
// case of tile-display mode all nodes show part of tile), we use
// vtkIceTCompositePass.
vtkSmartPointer<vtkIceTCompositePass> iceTPass =
vtkSmartPointer<vtkIceTCompositePass>::New();
iceTPass->SetController(controller);
// this is the pass IceT is going to use to render the geometry.
iceTPass->SetRenderPass(seq);
// insert the iceT pass into the pipeline.
cameraP->SetDelegatePass(iceTPass);
vtkOpenGLRenderer *glrenderer = vtkOpenGLRenderer::SafeDownCast(renderer);
glrenderer->SetPass(cameraP);
//---------------------------------------------------------------------------
// In parallel configurations, typically one node acts as the driver i.e. the
// node where the user interacts with the window e.g. mouse interactions,
// resizing windows etc. Typically that's the root-node.
// To ensure that the window parameters get propagated to all processes from
// the root node, we use the vtkSynchronizedRenderWindows.
vtkSmartPointer<vtkSynchronizedRenderWindows> syncWindows =
vtkSmartPointer<vtkSynchronizedRenderWindows>::New();
syncWindows->SetRenderWindow(renWin);
syncWindows->SetParallelController(controller);
// Since there could be multiple render windows that could be synced
// separately, to identify the windows uniquely among all processes, we need
// to give each vtkSynchronizedRenderWindows a unique id that's consistent
// across all the processes.
syncWindows->SetIdentifier(231);
// Now we need to ensure that the render is synchronized as well. This is
// essential to ensure all processes have the same camera orientation etc.
// This is done using the vtkSynchronizedRenderers class.
vtkSmartPointer<vtkSynchronizedRenderers> syncRenderers =
vtkSmartPointer<vtkSynchronizedRenderers>::New();
syncRenderers->SetRenderer(renderer);
syncRenderers->SetParallelController(controller);
//---------------------------------------------------------------------------
// Now start the event loop on the root node, on the satellites, we start the
// vtkMultiProcessController::ProcessRMIs() so those processes start listening
// to commands from the root-node.
if (my_id==0)
{
vtkSmartPointer<vtkRenderWindowInteractor> iren =
vtkSmartPointer<vtkRenderWindowInteractor>::New();
iren->SetRenderWindow(renWin);
renderer->ResetCamera(-0.5, 0.5, -0.5, 0.5, -0.5, 0.5);
renWin->Render();
retVal = vtkTesting::Test(argc, argv, renWin, 10);
if (retVal == vtkRegressionTester::DO_INTERACTOR)
{
iren->Start();
}
controller->TriggerBreakRMIs();
controller->Barrier();
}
else
{
controller->ProcessRMIs();
controller->Barrier();
}
}
controller->Finalize();
return !retVal;
}
|