File: SimpleTiming.c

package info (click to toggle)
paraview 5.1.2%2Bdfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 221,108 kB
  • ctags: 236,092
  • sloc: cpp: 2,416,026; ansic: 190,891; python: 99,856; xml: 81,001; tcl: 46,915; yacc: 5,039; java: 4,413; perl: 3,108; sh: 1,974; lex: 1,926; f90: 748; asm: 471; pascal: 228; makefile: 198; objc: 83; fortran: 31
file content (1772 lines) | stat: -rw-r--r-- 66,519 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
/* -*- c -*- *****************************************************************
** Copyright (C) 2010 Sandia Corporation
** Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
** the U.S. Government retains certain rights in this software.
**
** This source code is released under the New BSD License.
**
** This test provides a simple means of timing the IceT compositing.  It can be
** used for quick measurements and simple scaling studies.
*****************************************************************************/

#include <IceTDevCommunication.h>
#include <IceTDevContext.h>
#include <IceTDevImage.h>
#include <IceTDevMatrix.h>
#include "test_util.h"
#include "test_codes.h"

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <time.h>

#ifndef M_E
#define M_E         2.71828182845904523536028747135266250   /* e */
#endif

/* Structure used to capture the recursive division of space. */
struct region_divide_struct {
    int axis;           /* x = 0, y = 1, z = 2: the index to a vector array. */
    float cut;          /* Coordinate where cut occurs. */
    int my_side;        /* -1 on the negative side, 1 on the positive side. */
    int num_other_side; /* Number of partitions on other side. */
    struct region_divide_struct *next;
};

typedef struct region_divide_struct *region_divide;

#define NAME_SIZE 32
typedef struct {
    IceTInt num_proc;
    char strategy_name[NAME_SIZE];
    char si_strategy_name[NAME_SIZE];
    IceTInt num_tiles_x;
    IceTInt num_tiles_y;
    IceTInt screen_width;
    IceTInt screen_height;
    IceTFloat zoom;
    IceTBoolean transparent;
    IceTBoolean no_interlace;
    IceTBoolean no_collect;
    IceTBoolean dense_images;
    IceTInt max_image_split;
    IceTInt frame_number;
    IceTDouble render_time;
    IceTDouble buffer_read_time;
    IceTDouble buffer_write_time;
    IceTDouble compress_time;
    IceTDouble interlace_time;
    IceTDouble blend_time;
    IceTDouble draw_time;
    IceTDouble composite_time;
    IceTDouble collect_time;
    IceTInt64 bytes_sent;
    IceTDouble frame_time;
} timings_type;

static timings_type *g_timing_log;
static IceTSizeType g_timing_log_size;

/* Array for quick opacity lookups. */
#define OPACITY_LOOKUP_SIZE 4096
#define OPACITY_MAX_DT 4
#define OPACITY_COMPUTE_VALUE(dt) (1.0 - pow(M_E, -(dt)))
#define OPACITY_DT_2_INDEX(dt) \
    (  ((dt) < OPACITY_MAX_DT) \
     ? (int)((dt)*(OPACITY_LOOKUP_SIZE/OPACITY_MAX_DT)) \
     : OPACITY_LOOKUP_SIZE )
#define OPACITY_INDEX_2_DT(index) \
    ((index)*((double)OPACITY_MAX_DT/OPACITY_LOOKUP_SIZE))
static IceTDouble g_opacity_lookup[OPACITY_LOOKUP_SIZE+1];
#define QUICK_OPACITY(dt) (g_opacity_lookup[OPACITY_DT_2_INDEX(dt)])

static void init_opacity_lookup(void)
{
    IceTSizeType idx;

    for (idx = 0; idx < OPACITY_LOOKUP_SIZE+1; idx++) {
        IceTDouble distance_times_tau = OPACITY_INDEX_2_DT(idx);
        g_opacity_lookup[idx] = OPACITY_COMPUTE_VALUE(distance_times_tau);
    }
}

/* Used to signal the first render of a frame. */
static IceTBoolean g_first_render;

/* Program arguments. */
static IceTInt g_num_tiles_x;
static IceTInt g_num_tiles_y;
static IceTInt g_num_frames;
static IceTInt g_seed;
static IceTFloat g_zoom;
static IceTBoolean g_transparent;
static IceTBoolean g_colored_background;
static IceTBoolean g_no_interlace;
static IceTBoolean g_no_collect;
static IceTBoolean g_use_callback;
static IceTBoolean g_dense_images;
static IceTBoolean g_sync_render;
static IceTBoolean g_write_image;
static IceTEnum g_strategy;
static IceTEnum g_single_image_strategy;
static IceTBoolean g_do_magic_k_study;
static IceTInt g_max_magic_k;
static IceTBoolean g_do_image_split_study;
static IceTInt g_min_image_split;
static IceTBoolean g_do_scaling_study_factor_2;
static IceTBoolean g_do_scaling_study_factor_2_3;
static IceTInt g_num_scaling_study_random;

static float g_color[4];

static void usage(char *argv[])
{
    printstat("\nUSAGE: %s [testargs]\n", argv[0]);
    printstat("\nWhere  testargs are:\n");
    printstat("  -tilesx <num> Sets the number of tiles horizontal (default 1).\n");
    printstat("  -tilesy <num> Sets the number of tiles vertical (default 1).\n");
    printstat("  -frames <num> Sets the number of frames to render (default 2).\n");
    printstat("  -seed <num>   Use the given number as the random seed.\n");
    printstat("  -zoom <num>   Set the zoom factor for the camera (larger = more zoom).\n");
    printstat("  -transparent  Render transparent images.  (Uses 4 floats for colors.)\n");
    printstat("  -colored-background Use a color for the background and correct as necessary.\n");
    printstat("  -no-interlace Turn off the image interlacing optimization.\n");
    printstat("  -no-collect   Turn off image collection.\n");
    printstat("  -use-callback Do the drawing in an IceT callback.\n");
    printstat("  -sync-render  Synchronize rendering by adding a barrier to the draw callback.\n");
    printstat("  -dense-images Composite dense images by classifying no pixels as background.\n");
    printstat("  -write-image  Write an image on the first frame.\n");
    printstat("  -reduce       Use the reduce strategy (default).\n");
    printstat("  -vtree        Use the virtual trees strategy.\n");
    printstat("  -sequential   Use the sequential strategy.\n");
    printstat("  -bswap        Use the binary-swap single-image strategy.\n");
    printstat("  -bswapfold    Use the binary-swap with folding single-image strategy.\n");
    printstat("  -radixk       Use the radix-k single-image strategy.\n");
    printstat("  -radixkr      Use the radix-kr single-image strategy.\n");
    printstat("  -tree         Use the tree single-image strategy.\n");
    printstat("  -magic-k-study <num> Use the radix-k single-image strategy and repeat for\n"
           "                   multiple values of k, up to <num>, doubling each time.\n");
    printstat("  -max-image-split-study <num> Repeat the test for multiple maximum image\n"
           "                   splits starting at <num> and doubling each time.\n");
    printstat("  -scaling-study-factor-2 Perform a scaling study for all process counts\n"
              "                that are a factor of 2.\n");
    printstat("  -scaling-study-factor-2-3 Perform a scaling study that includes all\n"
              "                process counts that are a factor of 2 plus all process\n"
              "                counts that are a factor of 3 plus most process counts\n"
              "                that have factors of 2 and 3.\n");
    printstat("  -scaling-study-random <num> Picks a random number to bifurcate the\n"
              "                processes and runs the compositing on each of them. This\n"
              "                experiment is run <num> times. Run enough times this test\n"
              "                should give performance over scales at odd process counts.\n");
    printstat("  -h, -help     Print this help message.\n");
    printstat("\nFor general testing options, try -h or -help before test name.\n");
}

static void parse_arguments(int argc, char *argv[])
{
    int arg;

    g_num_tiles_x = 1;
    g_num_tiles_y = 1;
    g_num_frames = 2;
    g_seed = (IceTInt)time(NULL);
    g_zoom = (IceTFloat)1.0;
    g_transparent = ICET_FALSE;
    g_colored_background = ICET_FALSE;
    g_no_interlace = ICET_FALSE;
    g_no_collect = ICET_FALSE;
    g_use_callback = ICET_FALSE;
    g_dense_images = ICET_FALSE;
    g_sync_render = ICET_FALSE;
    g_write_image = ICET_FALSE;
    g_strategy = ICET_STRATEGY_REDUCE;
    g_single_image_strategy = ICET_SINGLE_IMAGE_STRATEGY_AUTOMATIC;
    g_do_magic_k_study = ICET_FALSE;
    g_max_magic_k = 0;
    g_do_image_split_study = ICET_FALSE;
    g_min_image_split = 0;
    g_do_scaling_study_factor_2 = ICET_FALSE;
    g_do_scaling_study_factor_2_3 = ICET_FALSE;
    g_num_scaling_study_random = 0;

    for (arg = 1; arg < argc; arg++) {
        if (strcmp(argv[arg], "-tilesx") == 0) {
            arg++;
            g_num_tiles_x = atoi(argv[arg]);
        } else if (strcmp(argv[arg], "-tilesy") == 0) {
            arg++;
            g_num_tiles_y = atoi(argv[arg]);
        } else if (strcmp(argv[arg], "-frames") == 0) {
            arg++;
            g_num_frames = atoi(argv[arg]);
        } else if (strcmp(argv[arg], "-seed") == 0) {
            arg++;
            g_seed = atoi(argv[arg]);
        } else if (strcmp(argv[arg], "-zoom") == 0) {
            arg++;
            g_zoom = (IceTFloat)atof(argv[arg]);
        } else if (strcmp(argv[arg], "-transparent") == 0) {
            g_transparent = ICET_TRUE;
        } else if (strcmp(argv[arg], "-colored-background") == 0) {
            g_colored_background = ICET_TRUE;
        } else if (strcmp(argv[arg], "-no-interlace") == 0) {
            g_no_interlace = ICET_TRUE;
        } else if (strcmp(argv[arg], "-no-collect") == 0) {
            g_no_collect = ICET_TRUE;
        } else if (strcmp(argv[arg], "-use-callback") == 0) {
            g_use_callback = ICET_TRUE;
        } else if (strcmp(argv[arg], "-dense-images") == 0) {
            g_dense_images = ICET_TRUE;
            /* Turn of interlacing. It won't help here. */
            g_no_interlace = ICET_TRUE;
        } else if (strcmp(argv[arg], "-sync-render") == 0) {
            g_sync_render = ICET_TRUE;
        } else if (strcmp(argv[arg], "-write-image") == 0) {
            g_write_image = ICET_TRUE;
        } else if (strcmp(argv[arg], "-reduce") == 0) {
            g_strategy = ICET_STRATEGY_REDUCE;
        } else if (strcmp(argv[arg], "-vtree") == 0) {
            g_strategy = ICET_STRATEGY_VTREE;
        } else if (strcmp(argv[arg], "-sequential") == 0) {
            g_strategy = ICET_STRATEGY_SEQUENTIAL;
        } else if (strcmp(argv[arg], "-bswap") == 0) {
            g_single_image_strategy = ICET_SINGLE_IMAGE_STRATEGY_BSWAP;
        } else if (strcmp(argv[arg], "-bswapfold") == 0) {
            g_single_image_strategy = ICET_SINGLE_IMAGE_STRATEGY_BSWAP_FOLDING;
        } else if (strcmp(argv[arg], "-radixk") == 0) {
            g_single_image_strategy = ICET_SINGLE_IMAGE_STRATEGY_RADIXK;
        } else if (strcmp(argv[arg], "-radixkr") == 0) {
            g_single_image_strategy = ICET_SINGLE_IMAGE_STRATEGY_RADIXKR;
        } else if (strcmp(argv[arg], "-tree") == 0) {
            g_single_image_strategy = ICET_SINGLE_IMAGE_STRATEGY_TREE;
        } else if (strcmp(argv[arg], "-magic-k-study") == 0) {
            g_do_magic_k_study = ICET_TRUE;
            g_single_image_strategy = ICET_SINGLE_IMAGE_STRATEGY_RADIXKR;
            arg++;
            g_max_magic_k = atoi(argv[arg]);
        } else if (strcmp(argv[arg], "-max-image-split-study") == 0) {
            g_do_image_split_study = ICET_TRUE;
            g_single_image_strategy = ICET_SINGLE_IMAGE_STRATEGY_RADIXKR;
            arg++;
            g_min_image_split = atoi(argv[arg]);
        } else if (strcmp(argv[arg], "-scaling-study-factor-2") == 0) {
            g_do_scaling_study_factor_2 = ICET_TRUE;
        } else if (strcmp(argv[arg], "-scaling-study-factor-2-3") == 0) {
            g_do_scaling_study_factor_2_3 = ICET_TRUE;
        } else if (strcmp(argv[arg], "-scaling-study-random") == 0) {
            arg++;
            g_num_scaling_study_random = atoi(argv[arg]);
        } else if (   (strcmp(argv[arg], "-h") == 0)
                   || (strcmp(argv[arg], "-help")) ) {
            usage(argv);
            exit(0);
        } else {
            printstat("Unknown option `%s'.\n", argv[arg]);
            usage(argv);
            exit(1);
        }
    }
}

#define NUM_HEX_PLANES 6
struct hexahedron {
    IceTDouble planes[NUM_HEX_PLANES][4];
};

static void intersect_ray_plane(const IceTDouble *ray_origin,
                                const IceTDouble *ray_direction,
                                const IceTDouble *plane,
                                IceTDouble *distance,
                                IceTBoolean *front_facing,
                                IceTBoolean *parallel)
{
    IceTDouble distance_numerator = icetDot3(plane, ray_origin) + plane[3];
    IceTDouble distance_denominator = icetDot3(plane, ray_direction);

    if (distance_denominator == 0.0) {
        *parallel = ICET_TRUE;
        *front_facing = (distance_numerator > 0);
    } else {
        *parallel = ICET_FALSE;
        *distance = -distance_numerator/distance_denominator;
        *front_facing = (distance_denominator < 0);
    }
}

/* This algorithm (and associated intersect_ray_plane) come from Graphics Gems
 * II, Fast Ray-Convex Polyhedron Intersection by Eric Haines. */
static void intersect_ray_hexahedron(const IceTDouble *ray_origin,
                                     const IceTDouble *ray_direction,
                                     const struct hexahedron hexahedron,
                                     IceTDouble *near_distance,
                                     IceTDouble *far_distance,
                                     IceTInt *near_plane_index,
                                     IceTBoolean *intersection_happened)
{
    int planeIdx;

    *near_distance = 0.0;
    *far_distance = 2.0;
    *near_plane_index = -1;

    for (planeIdx = 0; planeIdx < NUM_HEX_PLANES; planeIdx++) {
        IceTDouble distance;
        IceTBoolean front_facing;
        IceTBoolean parallel;

        intersect_ray_plane(ray_origin,
                            ray_direction,
                            hexahedron.planes[planeIdx],
                            &distance,
                            &front_facing,
                            &parallel);

        if (!parallel) {
            if (front_facing) {
                if (*near_distance < distance) {
                    *near_distance = distance;
                    *near_plane_index = planeIdx;
                }
            } else {
                if (distance < *far_distance) {
                    *far_distance = distance;
                }
            }
        } else { /*parallel*/
            if (front_facing) {
                /* Ray missed parallel plane.  No intersection. */
                *intersection_happened = ICET_FALSE;
                return;
            }
        }
    }

    *intersection_happened = (*near_distance < *far_distance);
}

/* Plane equations for unit box on origin. */
struct hexahedron unit_box = {
    {
        { -1.0, 0.0, 0.0, -0.5 },
        { 1.0, 0.0, 0.0, -0.5 },
        { 0.0, -1.0, 0.0, -0.5 },
        { 0.0, 1.0, 0.0, -0.5 },
        { 0.0, 0.0, -1.0, -0.5 },
        { 0.0, 0.0, 1.0, -0.5 }
    }
};

static void draw(const IceTDouble *projection_matrix,
                 const IceTDouble *modelview_matrix,
                 const IceTFloat *background_color,
                 const IceTInt *readback_viewport,
                 IceTImage result)
{
    IceTDouble transform[16];
    IceTDouble inverse_transpose_transform[16];
    IceTBoolean success;
    int planeIdx;
    struct hexahedron transformed_box;
    IceTInt width;
    IceTInt height;
    IceTFloat *colors_float = NULL;
    IceTUByte *colors_byte = NULL;
    IceTFloat *depths = NULL;
    IceTInt pixel_x;
    IceTInt pixel_y;
    IceTDouble ray_origin[3];
    IceTDouble ray_direction[3];
    IceTFloat background_depth;
    IceTFloat background_alpha;

    icetMatrixMultiply(transform, projection_matrix, modelview_matrix);

    success = icetMatrixInverseTranspose((const IceTDouble *)transform,
                                         inverse_transpose_transform);

    if (!success) {
        printrank("ERROR: Inverse failed.\n");
    }

    for (planeIdx = 0; planeIdx < NUM_HEX_PLANES; planeIdx++) {
        const IceTDouble *original_plane = unit_box.planes[planeIdx];
        IceTDouble *transformed_plane = transformed_box.planes[planeIdx];

        icetMatrixVectorMultiply(transformed_plane,
                                 inverse_transpose_transform,
                                 original_plane);
    }

    width = icetImageGetWidth(result);
    height = icetImageGetHeight(result);

    if (g_transparent) {
        colors_float = icetImageGetColorf(result);
    } else {
        colors_byte = icetImageGetColorub(result);
        depths = icetImageGetDepthf(result);
    }

    if (!g_dense_images) {
        background_depth = 1.0f;
        background_alpha = background_color[3];
    } else {
        IceTSizeType pixel_index;

        /* To fake dense images, use a depth and alpha for the background that
         * IceT will not recognize as background. */
        background_depth = 0.999f;
        background_alpha
                = (background_color[3] == 0) ? 0.001 : background_color[3];

        /* Clear out the the images to background so that pixels outside of
         * the contained viewport have valid values. */
        for (pixel_index = 0; pixel_index < width*height; pixel_index++) {
            if (g_transparent) {
                IceTFloat *color_dest = colors_float + 4*pixel_index;
                color_dest[0] = background_color[0];
                color_dest[1] = background_color[1];
                color_dest[2] = background_color[2];
                color_dest[3] = background_alpha;
            } else {
                IceTUByte *color_dest = colors_byte + 4*pixel_index;
                IceTFloat *depth_dest = depths + pixel_index;
                color_dest[0] = (IceTUByte)(background_color[0]*255);
                color_dest[1] = (IceTUByte)(background_color[1]*255);
                color_dest[2] = (IceTUByte)(background_color[2]*255);
                color_dest[3] = (IceTUByte)(background_alpha*255);
                depth_dest[0] = background_depth;
            }
        }
    }

    ray_direction[0] = ray_direction[1] = 0.0;
    ray_direction[2] = 1.0;
    ray_origin[2] = -1.0;
    for (pixel_y = readback_viewport[1];
         pixel_y < readback_viewport[1] + readback_viewport[3];
         pixel_y++) {
        ray_origin[1] = (2.0*pixel_y)/height - 1.0;
        for (pixel_x = readback_viewport[0];
             pixel_x < readback_viewport[0] + readback_viewport[2];
             pixel_x++) {
            IceTDouble near_distance;
            IceTDouble far_distance;
            IceTInt near_plane_index;
            IceTBoolean intersection_happened;
            IceTFloat color[4];
            IceTFloat depth;

            ray_origin[0] = (2.0*pixel_x)/width - 1.0;

            intersect_ray_hexahedron(ray_origin,
                                     ray_direction,
                                     transformed_box,
                                     &near_distance,
                                     &far_distance,
                                     &near_plane_index,
                                     &intersection_happened);

            if (intersection_happened) {
                const IceTDouble *near_plane;
                IceTDouble shading;

                near_plane = transformed_box.planes[near_plane_index];
                shading = -near_plane[2]/sqrt(icetDot3(near_plane, near_plane));

                color[0] = g_color[0] * (IceTFloat)shading;
                color[1] = g_color[1] * (IceTFloat)shading;
                color[2] = g_color[2] * (IceTFloat)shading;
                color[3] = g_color[3];
                depth = (IceTFloat)(0.5*near_distance);
                if (g_transparent) {
                    /* Modify color by an opacity determined by thickness. */
                    IceTDouble thickness = far_distance - near_distance;
                    IceTDouble opacity = QUICK_OPACITY(4.0*thickness);
                    if (opacity < 0.001) { opacity = 0.001; }
                    color[0] *= (IceTFloat)opacity;
                    color[1] *= (IceTFloat)opacity;
                    color[2] *= (IceTFloat)opacity;
                    color[3] *= (IceTFloat)opacity;
                }
            } else {
                color[0] = background_color[0];
                color[1] = background_color[1];
                color[2] = background_color[2];
                color[3] = background_alpha;
                depth = background_depth;
            }

            if (g_transparent) {
                IceTFloat *color_dest
                    = colors_float + 4*(pixel_y*width + pixel_x);
                color_dest[0] = color[0];
                color_dest[1] = color[1];
                color_dest[2] = color[2];
                color_dest[3] = color[3];
            } else {
                IceTUByte *color_dest
                    = colors_byte + 4*(pixel_y*width + pixel_x);
                IceTFloat *depth_dest
                    = depths + pixel_y*width + pixel_x;
                color_dest[0] = (IceTUByte)(color[0]*255);
                color_dest[1] = (IceTUByte)(color[1]*255);
                color_dest[2] = (IceTUByte)(color[2]*255);
                color_dest[3] = (IceTUByte)(color[3]*255);
                depth_dest[0] = depth;
            }
        }
    }

    if (g_first_render) {
        if (g_sync_render) {
            /* The rendering we are using here is pretty crummy.  It is not
               meant to be practical but to create reasonable images to
               composite.  One problem with it is that the render times are not
               well balanced even though everyone renders roughly the same sized
               object.  If you want to time the composite performance, this can
               interfere with the measurements.  To get around this problem, do
               a barrier that makes it look as if all rendering finishes at the
               same time.  Note that there is a remote possibility that not
               every process will render something, in which case this will
               deadlock.  Note that we make sure only to sync once to get around
               the less remote possibility that some, but not all, processes
               render more than once. */
            icetCommBarrier();
        }
        g_first_render = ICET_FALSE;
    }
}

/* Given the rank of this process in all of them, divides the unit box
 * centered on the origin evenly (w.r.t. volume) amongst all processes.  The
 * region for this process, characterized by the min and max corners, is
 * returned in the bounds_min and bounds_max parameters. */
static void find_region(int rank,
                        int num_proc,
                        float *bounds_min,
                        float *bounds_max,
                        region_divide *divisions)
{
    int axis = 0;
    int start_rank = 0;         /* The first rank. */
    int end_rank = num_proc;    /* One after the last rank. */
    region_divide current_division = NULL;

    bounds_min[0] = bounds_min[1] = bounds_min[2] = -0.5f;
    bounds_max[0] = bounds_max[1] = bounds_max[2] = 0.5f;

    *divisions = NULL;

    /* Recursively split each axis, dividing the number of processes in my group
       in half each time. */
    while (1 < (end_rank - start_rank)) {
        float length = bounds_max[axis] - bounds_min[axis];
        int middle_rank = (start_rank + end_rank)/2;
        float region_cut;
        region_divide new_divide = malloc(sizeof(struct region_divide_struct));

        /* Skew the place where we cut the region based on the relative size
         * of the group size on each side, which may be different if the
         * group cannot be divided evenly. */
        region_cut = (  bounds_min[axis]
                      + length*(middle_rank-start_rank)/(end_rank-start_rank) );

        new_divide->axis = axis;
        new_divide->cut = region_cut;
        new_divide->next = NULL;

        if (rank < middle_rank) {
            /* My rank is in the lower region. */
            new_divide->my_side = -1;
            new_divide->num_other_side = end_rank - middle_rank;
            bounds_max[axis] = region_cut;
            end_rank = middle_rank;
        } else {
            /* My rank is in the upper region. */
            new_divide->my_side = 1;
            new_divide->num_other_side = middle_rank - start_rank;
            bounds_min[axis] = region_cut;
            start_rank = middle_rank;
        }

        if (current_division != NULL) {
            current_division->next = new_divide;
        } else {
            *divisions = new_divide;
        }
        current_division = new_divide;

        axis = (axis + 1)%3;
    }
}

/* Free a region divide structure. */
static void free_region_divide(region_divide divisions)
{
    region_divide current_division = divisions;
    while (current_division != NULL) {
        region_divide next_division = current_division->next;
        free(current_division);
        current_division = next_division;
    }
}

/* Given the transformation matricies (representing camera position), determine
 * which side of each axis-aligned plane faces the camera.  The results are
 * stored in plane_orientations, which is expected to be an array of size 3.
 * Entry 0 in plane_orientations will be positive if the vector (1, 0, 0) points
 * towards the camera, negative otherwise.  Entries 1 and 2 are likewise for the
 * y and z vectors. */
static void get_axis_plane_orientations(const IceTDouble *projection,
                                        const IceTDouble *modelview,
                                        int *plane_orientations)
{
    IceTDouble full_transform[16];
    IceTDouble inverse_transpose_transform[16];
    IceTBoolean success;
    int planeIdx;

    icetMatrixMultiply(full_transform, projection, modelview);
    success = icetMatrixInverseTranspose((const IceTDouble *)full_transform,
                                         inverse_transpose_transform);

    for (planeIdx = 0; planeIdx < 3; planeIdx++) {
        IceTDouble plane_equation[4];
        IceTDouble transformed_plane[4];

        plane_equation[0] = plane_equation[1]
            = plane_equation[2] = plane_equation[3] = 0.0;
        plane_equation[planeIdx] = 1.0;

        /* To transform a plane, multiply the vector representing the plane
         * equation (ax + by + cz + d = 0) by the inverse transpose of the
         * transform. */
        icetMatrixVectorMultiply(transformed_plane,
                                 (const IceTDouble*)inverse_transpose_transform,
                                 (const IceTDouble*)plane_equation);

        /* If the normal of the plane is facing in the -z direction, then the
         * front of the plane is facing the camera. */
        if (transformed_plane[3] < 0) {
            plane_orientations[planeIdx] = 1;
        } else {
            plane_orientations[planeIdx] = -1;
        }
    }
}

/* Use the current OpenGL transformation matricies (representing camera
 * position) and the given region divisions to determine the composite
 * ordering. */
static void find_composite_order(const IceTDouble *projection,
                                 const IceTDouble *modelview,
                                 region_divide region_divisions)
{
    int num_proc = icetCommSize();
    IceTInt *process_ranks;
    IceTInt my_position;
    int plane_orientations[3];
    region_divide current_divide;

    get_axis_plane_orientations(projection, modelview, plane_orientations);

    my_position = 0;
    for (current_divide = region_divisions;
         current_divide != NULL;
         current_divide = current_divide->next) {
        int axis = current_divide->axis;
        int my_side = current_divide->my_side;
        int plane_side = plane_orientations[axis];
        /* If my_side is the side of the plane away from the camera, add
           everything on the other side as before me. */
        if (   ((my_side < 0) && (plane_side < 0))
            || ((0 < my_side) && (0 < plane_side)) ) {
            my_position += current_divide->num_other_side;
        }
    }

    process_ranks = malloc(num_proc * sizeof(IceTInt));
    icetCommAllgather(&my_position, 1, ICET_INT, process_ranks);

    icetEnable(ICET_ORDERED_COMPOSITE);
    icetCompositeOrder(process_ranks);

    free(process_ranks);
}

/* Finds the viewport of the bounds of the locally rendered geometry. */
/* This code is stolen from drawFindContainedViewport in draw.c. */
static void find_contained_viewport(IceTInt contained_viewport[4],
                                    const IceTDouble projection_matrix[16],
                                    const IceTDouble modelview_matrix[16])
{
    IceTDouble total_transform[16];
    IceTDouble left, right, bottom, top;
    IceTDouble *transformed_verts;
    IceTInt global_viewport[4];
    IceTInt num_bounding_verts;
    int i;

    icetGetIntegerv(ICET_GLOBAL_VIEWPORT, global_viewport);

    {
        IceTDouble viewport_matrix[16];
        IceTDouble tmp_matrix[16];

        /* Strange projection matrix that transforms the x and y of normalized
           screen coordinates into viewport coordinates that may be cast to
           integers. */
        viewport_matrix[ 0] = global_viewport[2];
        viewport_matrix[ 1] = 0.0;
        viewport_matrix[ 2] = 0.0;
        viewport_matrix[ 3] = 0.0;

        viewport_matrix[ 4] = 0.0;
        viewport_matrix[ 5] = global_viewport[3];
        viewport_matrix[ 6] = 0.0;
        viewport_matrix[ 7] = 0.0;

        viewport_matrix[ 8] = 0.0;
        viewport_matrix[ 9] = 0.0;
        viewport_matrix[10] = 2.0;
        viewport_matrix[11] = 0.0;

        viewport_matrix[12] = global_viewport[2] + global_viewport[0]*2.0;
        viewport_matrix[13] = global_viewport[3] + global_viewport[1]*2.0;
        viewport_matrix[14] = 0.0;
        viewport_matrix[15] = 2.0;

        icetMatrixMultiply(tmp_matrix,
                           (const IceTDouble *)projection_matrix,
                           (const IceTDouble *)modelview_matrix);
        icetMatrixMultiply(total_transform,
                           (const IceTDouble *)viewport_matrix,
                           (const IceTDouble *)tmp_matrix);
    }

    icetGetIntegerv(ICET_NUM_BOUNDING_VERTS, &num_bounding_verts);
    transformed_verts = icetGetStateBuffer(
                                       ICET_TRANSFORMED_BOUNDS,
                                       sizeof(IceTDouble)*num_bounding_verts*4);

    /* Transform each vertex to find where it lies in the global viewport and
       normalized z.  Leave the results in homogeneous coordinates for now. */
    {
        const IceTDouble *bound_vert
            = icetUnsafeStateGetDouble(ICET_GEOMETRY_BOUNDS);
        for (i = 0; i < num_bounding_verts; i++) {
            IceTDouble bound_vert_4vec[4];
            bound_vert_4vec[0] = bound_vert[3*i+0];
            bound_vert_4vec[1] = bound_vert[3*i+1];
            bound_vert_4vec[2] = bound_vert[3*i+2];
            bound_vert_4vec[3] = 1.0;
            icetMatrixVectorMultiply(transformed_verts + 4*i,
                                     (const IceTDouble *)total_transform,
                                     (const IceTDouble *)bound_vert_4vec);
        }
    }

    /* Set absolute mins and maxes. */
    left   = global_viewport[0] + global_viewport[2];
    right  = global_viewport[0];
    bottom = global_viewport[1] + global_viewport[3];
    top    = global_viewport[1];

    /* Now iterate over all the transformed verts and adjust the absolute mins
       and maxs to include them all. */
    for (i = 0; i < num_bounding_verts; i++)
    {
        IceTDouble *vert = transformed_verts + 4*i;

        /* Check to see if the vertex is in front of the near cut plane.  This
           is true when z/w >= -1 or z + w >= 0.  The second form is better just
           in case w is 0. */
        if (vert[2] + vert[3] >= 0.0) {
          /* Normalize homogeneous coordinates. */
            IceTDouble invw = 1.0/vert[3];
            IceTDouble x = vert[0]*invw;
            IceTDouble y = vert[1]*invw;

          /* Update contained region. */
            if (left   > x) left   = x;
            if (right  < x) right  = x;
            if (bottom > y) bottom = y;
            if (top    < y) top    = y;
        } else {
          /* The vertex is being clipped by the near plane.  In perspective
             mode, vertices behind the near clipping plane can sometimes give
             misleading projections.  Instead, find all the other vertices on
             the other side of the near plane, compute the intersection of the
             segment between the two points and the near plane (in homogeneous
             coordinates) and use that as the projection. */
            int j;
            for (j = 0; j < num_bounding_verts; j++) {
                IceTDouble *vert2 = transformed_verts + 4*j;
                double t;
                IceTDouble x, y, invw;
                if (vert2[2] + vert2[3] < 0.0) {
                  /* Ignore other points behind near plane. */
                    continue;
                }
              /* Let the two points in question be v_i and v_j.  Define the
                 segment between them with the parametric equation
                 p(t) = (vert - vert2)t + vert2.  First, find t where the z and
                 w coordinates of p(t) sum to zero. */
                t = (vert2[2]+vert2[3])/(vert2[2]-vert[2] + vert2[3]-vert[3]);
              /* Use t to find the intersection point.  While we are at it,
                 normalize the resulting coordinates.  We don't need z because
                 we know it is going to be -1. */
                invw = 1.0/((vert[3] - vert2[3])*t + vert2[3] );
                x = ((vert[0] - vert2[0])*t + vert2[0] ) * invw;
                y = ((vert[1] - vert2[1])*t + vert2[1] ) * invw;

              /* Update contained region. */
                if (left   > x) left   = x;
                if (right  < x) right  = x;
                if (bottom > y) bottom = y;
                if (top    < y) top    = y;
            }
        }
    }

    left = floor(left);
    right = ceil(right);
    bottom = floor(bottom);
    top = ceil(top);

  /* Clip bounds to global viewport. */
    if (left   < global_viewport[0]) left = global_viewport[0];
    if (right  > global_viewport[0] + global_viewport[2])
        right  = global_viewport[0] + global_viewport[2];
    if (bottom < global_viewport[1]) bottom = global_viewport[1];
    if (top    > global_viewport[1] + global_viewport[3])
        top    = global_viewport[1] + global_viewport[3];

  /* Use this information to build a containing viewport. */
    contained_viewport[0] = (IceTInt)left;
    contained_viewport[1] = (IceTInt)bottom;
    contained_viewport[2] = (IceTInt)(right - left);
    contained_viewport[3] = (IceTInt)(top - bottom);
}

static void SimpleTimingCollectAndPrintLog()
{
    IceTInt rank;
    IceTInt num_proc;
    IceTInt *log_sizes;

    icetGetIntegerv(ICET_RANK, &rank);
    icetGetIntegerv(ICET_NUM_PROCESSES, &num_proc);

    /* Collect the number of log entries each process has. */
    log_sizes = malloc(num_proc*sizeof(IceTInt));
    icetCommGather(&g_timing_log_size, 1, ICET_SIZE_TYPE, log_sizes, 0);

    if (rank == 0) {
        timings_type *all_logs;
        IceTSizeType *data_sizes;
        IceTSizeType *offsets;
        IceTInt total_logs;
        IceTInt proc_index;
        IceTInt log_index;

        data_sizes = malloc(num_proc*sizeof(IceTSizeType));
        offsets = malloc(num_proc*sizeof(IceTSizeType));

        total_logs = 0;
        for (proc_index = 0; proc_index < num_proc; proc_index++) {
            data_sizes[proc_index] = log_sizes[proc_index]*sizeof(timings_type);
            offsets[proc_index] = total_logs*sizeof(timings_type);
            total_logs += log_sizes[proc_index];
        }

        all_logs = malloc(total_logs*sizeof(timings_type));
        icetCommGatherv(g_timing_log,
                        g_timing_log_size*sizeof(timings_type),
                        ICET_BYTE,
                        all_logs,
                        data_sizes,
                        offsets,
                        0);

        for (log_index = 0; log_index < total_logs; log_index++) {
            timings_type *timing = all_logs + log_index;
            printf("LOG,%d,%s,%s,%d,%d,%d,%d,%0.1f,%s,%s,%s,%s,%d,%d,%lg,%lg,%lg,%lg,%lg,%lg,%lg,%lg,%lg,%ld,%lg\n",
                   timing->num_proc,
                   timing->strategy_name,
                   timing->si_strategy_name,
                   timing->num_tiles_x,
                   timing->num_tiles_y,
                   timing->screen_width,
                   timing->screen_height,
                   timing->zoom,
                   timing->transparent ? "yes" : "no",
                   timing->no_interlace ? "no" : "yes",
                   timing->no_collect ? "no" : "yes",
                   timing->dense_images ? "yes" : "no",
                   timing->max_image_split,
                   timing->frame_number,
                   timing->render_time,
                   timing->buffer_read_time,
                   timing->buffer_write_time,
                   timing->compress_time,
                   timing->interlace_time,
                   timing->blend_time,
                   timing->draw_time,
                   timing->composite_time,
                   timing->collect_time,
                   (long int)timing->bytes_sent,
                   timing->frame_time);
        }

        free(data_sizes);
        free(offsets);
        free(all_logs);
    } else /* rank != 0 */ {
        icetCommGatherv(g_timing_log,
                        g_timing_log_size*sizeof(timings_type),
                        ICET_BYTE,
                        NULL,
                        NULL,
                        NULL,
                        0);
    }

    free(log_sizes);

    if (g_timing_log_size > 0) {
        free(g_timing_log);
        g_timing_log = NULL;
        g_timing_log_size = 0;
    }

    /* This is to prevent a non-root from printing while the root is writing
       the log. */
    icetCommBarrier();
}

static int SimpleTimingDoRender()
{
    IceTInt rank;
    IceTInt num_proc;
    const char *strategy_name;
    const char *si_strategy_name;
    IceTInt max_image_split;

    float aspect = (  (float)(g_num_tiles_x*SCREEN_WIDTH)
                    / (float)(g_num_tiles_y*SCREEN_HEIGHT) );
    int frame;
    float bounds_min[3];
    float bounds_max[3];
    region_divide region_divisions;

    IceTDouble projection_matrix[16];
    IceTFloat background_color[4];

    IceTImage pre_rendered_image = icetImageNull();
    void *pre_rendered_image_buffer = NULL;

    timings_type *timing_array;

    /* Normally, the first thing that you do is set up your communication and
     * then create at least one IceT context.  This has already been done in the
     * calling function (i.e. icetTests_mpi.c).  See the init_mpi in
     * test_mpi.h for an example.
     */

    init_opacity_lookup();

    /* If we had set up the communication layer ourselves, we could have gotten
     * these parameters directly from it.  Since we did not, this provides an
     * alternate way. */
    icetGetIntegerv(ICET_RANK, &rank);
    icetGetIntegerv(ICET_NUM_PROCESSES, &num_proc);

    if (g_colored_background) {
        background_color[0] = 0.2f;
        background_color[1] = 0.5f;
        background_color[2] = 0.7f;
        background_color[3] = 1.0f;
    } else {
        background_color[0] = 0.0f;
        background_color[1] = 0.0f;
        background_color[2] = 0.0f;
        background_color[3] = 0.0f;
    }

    /* Give IceT a function that will issue the drawing commands. */
    icetDrawCallback(draw);

    /* Other IceT state. */
    if (g_transparent) {
        icetCompositeMode(ICET_COMPOSITE_MODE_BLEND);
        icetSetColorFormat(ICET_IMAGE_COLOR_RGBA_FLOAT);
        icetSetDepthFormat(ICET_IMAGE_DEPTH_NONE);
        icetEnable(ICET_CORRECT_COLORED_BACKGROUND);
    } else {
        icetCompositeMode(ICET_COMPOSITE_MODE_Z_BUFFER);
        icetSetColorFormat(ICET_IMAGE_COLOR_RGBA_UBYTE);
        icetSetDepthFormat(ICET_IMAGE_DEPTH_FLOAT);
    }

    if (g_no_interlace) {
        icetDisable(ICET_INTERLACE_IMAGES);
    } else {
        icetEnable(ICET_INTERLACE_IMAGES);
    }

    if (g_no_collect) {
        icetDisable(ICET_COLLECT_IMAGES);
    } else {
        icetEnable(ICET_COLLECT_IMAGES);
    }

    /* Give IceT the bounds of the polygons that will be drawn.  Note that
         * IceT will take care of any transformation that gets passed to
         * icetDrawFrame. */
    icetBoundingBoxd(-0.5f, 0.5f, -0.5, 0.5, -0.5, 0.5);

    /* Determine the region we want the local geometry to be in.  This will be
     * used for the modelview transformation later. */
    find_region(rank, num_proc, bounds_min, bounds_max, &region_divisions);

    /* Set up the tiled display.  The asignment of displays to processes is
     * arbitrary because, as this is a timing test, I am not too concerned
     * about who shows what. */
    if (g_num_tiles_x*g_num_tiles_y <= num_proc) {
        int x, y, display_rank;
        icetResetTiles();
        display_rank = 0;
        for (y = 0; y < g_num_tiles_y; y++) {
            for (x = 0; x < g_num_tiles_x; x++) {
                icetAddTile(x*(IceTInt)SCREEN_WIDTH,
                            y*(IceTInt)SCREEN_HEIGHT,
                            SCREEN_WIDTH,
                            SCREEN_HEIGHT,
                            display_rank);
                display_rank++;
            }
        }
    } else {
        printstat("Not enough processes to %dx%d tiles.\n",
               g_num_tiles_x, g_num_tiles_y);
        return TEST_FAILED;
    }

    if (!g_use_callback) {
        IceTInt global_viewport[4];
        IceTInt width, height;
        IceTInt buffer_size;

        icetGetIntegerv(ICET_GLOBAL_VIEWPORT, global_viewport);
        width = global_viewport[2]; height = global_viewport[3];

        buffer_size = icetImageBufferSize(width, height);
        pre_rendered_image_buffer = malloc(buffer_size);
        pre_rendered_image =
                icetImageAssignBuffer(pre_rendered_image_buffer, width, height);
    }

    icetStrategy(g_strategy);
    icetSingleImageStrategy(g_single_image_strategy);

    /* Set up the projection matrix. */
    icetMatrixFrustum(-0.65*aspect/g_zoom, 0.65*aspect/g_zoom,
                      -0.65/g_zoom, 0.65/g_zoom,
                      3.0, 5.0,
                      projection_matrix);

    if (rank%10 < 7) {
        IceTInt color_bits = rank%10 + 1;
        g_color[0] = (float)(color_bits%2);
        g_color[1] = (float)((color_bits/2)%2);
        g_color[2] = (float)((color_bits/4)%2);
        g_color[3] = 1.0f;
    } else {
        g_color[0] = g_color[1] = g_color[2] = 0.5f;
        g_color[rank%10 - 7] = 0.0f;
        g_color[3] = 1.0f;
    }

    /* Initialize randomness. */
    if (rank == 0) {
        int i;
        printstat("Seed = %d\n", g_seed);
        for (i = 1; i < num_proc; i++) {
            icetCommSend(&g_seed, 1, ICET_INT, i, 33);
        }
    } else {
        icetCommRecv(&g_seed, 1, ICET_INT, 0, 33);
    }

    srand(g_seed);

    timing_array = malloc(g_num_frames * sizeof(timings_type));

    strategy_name = icetGetStrategyName();
    if (g_single_image_strategy == ICET_SINGLE_IMAGE_STRATEGY_RADIXK) {
        static char name_buffer[256];
        IceTInt magic_k;

        icetGetIntegerv(ICET_MAGIC_K, &magic_k);
        sprintf(name_buffer, "radix-k %d", (int)magic_k);
        si_strategy_name = name_buffer;
    } else if (g_single_image_strategy == ICET_SINGLE_IMAGE_STRATEGY_RADIXKR) {
            static char name_buffer[256];
            IceTInt magic_k;

            icetGetIntegerv(ICET_MAGIC_K, &magic_k);
            sprintf(name_buffer, "radix-kr %d", (int)magic_k);
            si_strategy_name = name_buffer;
    } else {
        si_strategy_name = icetGetSingleImageStrategyName();
    }

    icetGetIntegerv(ICET_MAX_IMAGE_SPLIT, &max_image_split);

    for (frame = 0; frame < g_num_frames; frame++) {
        IceTDouble elapsed_time;
        IceTDouble modelview_matrix[16];
        IceTImage image;

        /* We can set up a modelview matrix here and IceT will factor this in
         * determining the screen projection of the geometry. */
        icetMatrixIdentity(modelview_matrix);

        /* Move geometry back so that it can be seen by the camera. */
        icetMatrixMultiplyTranslate(modelview_matrix, 0.0, 0.0, -4.0);

        /* Rotate to some random view. */
        icetMatrixMultiplyRotate(modelview_matrix,
                                 (360.0*rand())/RAND_MAX, 1.0, 0.0, 0.0);
        icetMatrixMultiplyRotate(modelview_matrix,
                                 (360.0*rand())/RAND_MAX, 0.0, 1.0, 0.0);
        icetMatrixMultiplyRotate(modelview_matrix,
                                 (360.0*rand())/RAND_MAX, 0.0, 0.0, 1.0);

        /* Determine view ordering of geometry based on camera position
           (represented by the current projection and modelview matrices). */
        if (g_transparent) {
            find_composite_order(projection_matrix,
                                 modelview_matrix,
                                 region_divisions);
        }

        /* Translate the unit box centered on the origin to the region specified
         * by bounds_min and bounds_max. */
        icetMatrixMultiplyTranslate(modelview_matrix,
                                    bounds_min[0],
                                    bounds_min[1],
                                    bounds_min[2]);
        icetMatrixMultiplyScale(modelview_matrix,
                                bounds_max[0] - bounds_min[0],
                                bounds_max[1] - bounds_min[1],
                                bounds_max[2] - bounds_min[2]);
        icetMatrixMultiplyTranslate(modelview_matrix, 0.5, 0.5, 0.5);

        if (!g_use_callback) {
            /* Draw the image for the frame. */
            IceTInt contained_viewport[4];
            find_contained_viewport(contained_viewport,
                                    projection_matrix,
                                    modelview_matrix);
            if (g_transparent) {
                IceTFloat black[4] = { 0.0, 0.0, 0.0, 0.0 };
                draw(projection_matrix,
                     modelview_matrix,
                     black,
                     contained_viewport,
                     pre_rendered_image);
            } else {
                draw(projection_matrix,
                     modelview_matrix,
                     background_color,
                     contained_viewport,
                     pre_rendered_image);
            }
        }

        if (g_dense_images) {
            /* With dense images, we want IceT to load in all pixels, so clear
             * out the bounding box/vertices. */
            icetBoundingVertices(0, ICET_VOID, 0, 0, NULL);
        }

        /* Get everyone to start at the same time. */
        icetCommBarrier();

        elapsed_time = icetWallTime();

        if (g_use_callback) {
            /* Instead of calling draw() directly, call it indirectly through
             * icetDrawFrame().  IceT will automatically handle image
             * compositing. */
            g_first_render = ICET_TRUE;
            image = icetDrawFrame(projection_matrix,
                                  modelview_matrix,
                                  background_color);
        } else {
            image = icetCompositeImage(
                        icetImageGetColorConstVoid(pre_rendered_image,NULL),
                        g_transparent ? NULL : icetImageGetDepthConstVoid(pre_rendered_image,NULL),
                        NULL,
                        projection_matrix,
                        modelview_matrix,
                        background_color);
        }

        /* Let everyone catch up before finishing the frame. */
        icetCommBarrier();

        elapsed_time = icetWallTime() - elapsed_time;

        /* Record timings to logging. */
        timing_array[frame].num_proc = num_proc;
        strncpy(timing_array[frame].strategy_name, strategy_name, NAME_SIZE);
        timing_array[frame].strategy_name[NAME_SIZE-1] = '\0';
        strncpy(timing_array[frame].si_strategy_name, si_strategy_name, NAME_SIZE);
        timing_array[frame].si_strategy_name[NAME_SIZE-1] = '\0';
        timing_array[frame].num_tiles_x = g_num_tiles_x;
        timing_array[frame].num_tiles_y = g_num_tiles_y;
        timing_array[frame].screen_width = SCREEN_WIDTH;
        timing_array[frame].screen_height = SCREEN_HEIGHT;
        timing_array[frame].zoom = g_zoom;
        timing_array[frame].transparent = g_transparent;
        timing_array[frame].no_interlace = g_no_interlace;
        timing_array[frame].no_collect = g_no_collect;
        timing_array[frame].dense_images = g_dense_images;
        timing_array[frame].max_image_split = max_image_split;
        timing_array[frame].frame_number = frame;
        icetGetDoublev(ICET_RENDER_TIME,
                       &timing_array[frame].render_time);
        icetGetDoublev(ICET_BUFFER_READ_TIME,
                       &timing_array[frame].buffer_read_time);
        icetGetDoublev(ICET_BUFFER_WRITE_TIME,
                       &timing_array[frame].buffer_write_time);
        icetGetDoublev(ICET_COMPRESS_TIME,
                       &timing_array[frame].compress_time);
        icetGetDoublev(ICET_INTERLACE_TIME,
                       &timing_array[frame].interlace_time);
        icetGetDoublev(ICET_BLEND_TIME,
                       &timing_array[frame].blend_time);
        icetGetDoublev(ICET_TOTAL_DRAW_TIME,
                       &timing_array[frame].draw_time);
        icetGetDoublev(ICET_COMPOSITE_TIME,
                       &timing_array[frame].composite_time);
        icetGetDoublev(ICET_COLLECT_TIME,
                       &timing_array[frame].collect_time);
        timing_array[frame].bytes_sent
                = icetUnsafeStateGetInteger(ICET_BYTES_SENT)[0];
        timing_array[frame].frame_time = elapsed_time;

        /* Write out image to verify rendering occurred correctly. */
        if (   g_write_image
            && (rank < (g_num_tiles_x*g_num_tiles_y))
            && (frame == 0)
               ) {
            IceTUByte *buffer = malloc(SCREEN_WIDTH*SCREEN_HEIGHT*4);
            char filename[256];
            icetImageCopyColorub(image, buffer, ICET_IMAGE_COLOR_RGBA_UBYTE);
            sprintf(filename, "SimpleTiming%02d.ppm", rank);
            write_ppm(filename, buffer, (int)SCREEN_WIDTH, (int)SCREEN_HEIGHT);
            free(buffer);
        }
    }

    /* Collect max times and log. */
    {
        timings_type *timing_collection = malloc(num_proc*sizeof(timings_type));

        if (rank == 0) {
            if (g_timing_log_size == 0) {
                g_timing_log = malloc(g_num_frames*sizeof(timings_type));
            } else {
                g_timing_log = realloc(g_timing_log,
                                       (g_timing_log_size+g_num_frames)
                                        *sizeof(timings_type));
            }
        }

        for (frame = 0; frame < g_num_frames; frame++) {
            timings_type *timing = &timing_array[frame];

            icetCommGather(timing,
                           sizeof(timings_type),
                           ICET_BYTE,
                           timing_collection,
                           0);

            if (rank == 0) {
                int p;
                IceTInt64 total_bytes_sent = 0;

                for (p = 0; p < num_proc; p++) {
#define UPDATE_MAX(field) if (timing->field < timing_collection[p].field) timing->field = timing_collection[p].field;
                    UPDATE_MAX(render_time);
                    UPDATE_MAX(buffer_read_time);
                    UPDATE_MAX(buffer_write_time);
                    UPDATE_MAX(compress_time);
                    UPDATE_MAX(interlace_time);
                    UPDATE_MAX(blend_time);
                    UPDATE_MAX(draw_time);
                    UPDATE_MAX(composite_time);
                    UPDATE_MAX(collect_time);
                    UPDATE_MAX(frame_time);
                    total_bytes_sent += timing_collection[p].bytes_sent;
                }
                timing->bytes_sent = total_bytes_sent;

                g_timing_log[g_timing_log_size] = *timing;
                g_timing_log_size++;
            }
        }

        free(timing_collection);
    }

    free_region_divide(region_divisions);
    free(timing_array);

    pre_rendered_image = icetImageNull();
    if (pre_rendered_image_buffer != NULL) {
        free(pre_rendered_image_buffer);
    }

    return TEST_PASSED;
}

static int SimpleTimingDoParameterStudies()
{
    if (g_do_magic_k_study) {
        IceTContext original_context = icetGetContext();
        IceTInt magic_k;
        for (magic_k = 2; magic_k <= g_max_magic_k; magic_k *= 2) {
            char k_string[64];
            int retval;

#ifdef _WIN32
            sprintf(k_string, "ICET_MAGIC_K=%d", magic_k);
            putenv(k_string);
#else
            sprintf(k_string, "%d", magic_k);
            setenv("ICET_MAGIC_K", k_string, ICET_TRUE);
#endif

            /* This is a bit hackish.  The magic k value is set when the IceT
               context is initialized.  Thus, for the environment to take
               effect, we need to make a new context.  (Another benefit:
               resetting buffers.)  To make a new context, we need to get the
               communiator. */
            {
                IceTCommunicator comm = icetGetCommunicator();
                icetCreateContext(comm);
            }

            retval = SimpleTimingDoRender();

            /* We no longer need the context we just created. */
            icetDestroyContext(icetGetContext());
            icetSetContext(original_context);

            if (retval != TEST_PASSED) { return retval; }
        }
        return TEST_PASSED;
    } else if (g_do_image_split_study) {
        IceTContext original_context = icetGetContext();
        IceTInt num_proc;
        IceTInt magic_k;
        IceTInt image_split;

        icetGetIntegerv(ICET_NUM_PROCESSES, &num_proc);
        icetGetIntegerv(ICET_MAGIC_K, &magic_k);

        for (image_split = g_min_image_split;
             image_split <= num_proc;
             image_split *= 2) {
            char image_split_string[64];
            int retval;

#ifdef _WIN32
            sprintf(image_split_string, "ICET_MAX_IMAGE_SPLIT=%d", image_split);
            putenv(image_split_string);
#else
            sprintf(image_split_string, "%d", image_split);
            setenv("ICET_MAX_IMAGE_SPLIT", image_split_string, ICET_TRUE);
#endif

            /* This is a bit hackish.  The max image split value is set when the
               IceT context is initialized.  Thus, for the environment to take
               effect, we need to make a new context.  (Another benefit:
               resetting buffers.)  To make a new context, we need to get the
               communiator. */
            {
                IceTCommunicator comm = icetGetCommunicator();
                icetCreateContext(comm);
            }

            retval = SimpleTimingDoRender();

            /* We no longer need the context we just created. */
            icetDestroyContext(icetGetContext());
            icetSetContext(original_context);

            if (retval != TEST_PASSED) { return retval; }
        }
        return TEST_PASSED;
    } else {
        return SimpleTimingDoRender();
    }
}

static IceTCommunicator MakeCommSubset(IceTInt size, IceTInt offset)
{
    IceTInt32 *ranks;
    IceTInt rank_index;
    IceTCommunicator old_comm;
    IceTCommunicator new_comm;

    ranks = malloc(size*sizeof(IceTInt32));
    for (rank_index = 0; rank_index < size; rank_index++) {
        ranks[rank_index] = rank_index + offset;
    }

    old_comm = icetGetCommunicator();

    new_comm = old_comm->Subset(old_comm, size, ranks);

    free(ranks);

    return new_comm;
}

static int SimpleTimingDoScalingStudyFactor2()
{
    IceTInt size;
    IceTInt rank;
    IceTInt max_power_2;
    IceTInt min_size = g_num_tiles_x*g_num_tiles_y;
    IceTContext original_context = icetGetContext();
    int worst_result = TEST_PASSED;

    {
        int result = SimpleTimingDoParameterStudies();
        if (result != TEST_PASSED) { return result; }
    }
    SimpleTimingCollectAndPrintLog();

    icetGetIntegerv(ICET_NUM_PROCESSES, &size);
    icetGetIntegerv(ICET_RANK, &rank);
    max_power_2 = 1;
    while (max_power_2 <= size) { max_power_2 *= 2; }
    max_power_2 /= 2;

    if ((max_power_2 < size) && (max_power_2 >= min_size)) {
        IceTCommunicator new_communicator = MakeCommSubset(max_power_2, 0);
        if (rank < max_power_2) {
            IceTContext new_context = icetCreateContext(new_communicator);
            int result = SimpleTimingDoParameterStudies();
            if (result != TEST_PASSED) { worst_result = result; }
            icetSetContext(original_context);
            icetDestroyContext(new_context);
            new_communicator->Destroy(new_communicator);
        }
    }

    {
        IceTInt power_2 = max_power_2/2;
        IceTInt offset = 0;
        IceTBoolean has_group = ICET_FALSE;
        IceTCommunicator new_comm;
        while (power_2 >= min_size) {
            IceTCommunicator try_comm = MakeCommSubset(power_2, offset);
            if ((rank >= offset) && (rank < offset+power_2)) {
                has_group = ICET_TRUE;
                new_comm = try_comm;
            }
            offset += power_2;
            power_2 /= 2;
        }
        if (has_group) {
            IceTContext new_context;
            int result;
            new_context = icetCreateContext(new_comm);
            new_comm->Destroy(new_comm);

            result = SimpleTimingDoParameterStudies();
            if (result != TEST_PASSED) { worst_result = result; }

            icetSetContext(original_context);
            icetDestroyContext(new_context);
        }
    }

    return worst_result;
}

static int SimpleTimingDoScalingStudyFactor2_3()
{
    IceTInt size;
    IceTInt rank;
    IceTInt max_power_3;
    IceTInt min_size = g_num_tiles_x*g_num_tiles_y;
    IceTContext original_context = icetGetContext();
    int worst_result = TEST_PASSED;

    worst_result = SimpleTimingDoScalingStudyFactor2();
    SimpleTimingCollectAndPrintLog();

    icetGetIntegerv(ICET_NUM_PROCESSES, &size);
    icetGetIntegerv(ICET_RANK, &rank);
    max_power_3 = 1;
    while (max_power_3 <= size) { max_power_3 *= 3; }
    max_power_3 /= 3;

    if ((max_power_3*2 < size) && (max_power_3*2 >= min_size)) {
        IceTCommunicator new_communicator = MakeCommSubset(max_power_3*2, 0);
        if (rank < max_power_3*2) {
            IceTContext new_context = icetCreateContext(new_communicator);
            int result = SimpleTimingDoParameterStudies();
            if (result != TEST_PASSED) { worst_result = result; }
            icetSetContext(original_context);
            icetDestroyContext(new_context);
            new_communicator->Destroy(new_communicator);
        }
        SimpleTimingCollectAndPrintLog();
    }

    {
        // Start with a context with a power of three processes.
        IceTCommunicator new_comm = MakeCommSubset(max_power_3, 0);
        if (new_comm == ICET_COMM_NULL) {
            // This rank is not participating in the rest of the tests.
            return worst_result;
        }
        icetCreateContext(new_comm);
        new_comm->Destroy(new_comm);
    }

    if (max_power_3 < 3) {
        // Corner case where we are running with to few processes to make
        // any factors. The code below can break, so just bail.
        icetDestroyContext(icetGetContext());
        icetSetContext(original_context);
        return worst_result;
    }

    if ((max_power_3 < size) && (max_power_3 >= min_size)) {
        if (rank < max_power_3) {
            int result = SimpleTimingDoParameterStudies();
            if (result != TEST_PASSED) { worst_result = result; }
        }
        SimpleTimingCollectAndPrintLog();
    }

    // This loop will run in log_3 iterations selecting any factors of 2 and 3
    // it finds. Let us say max_power_3 = 3^N. The iterations of the loop
    // break up the processors is partitions of 1/3 and 2/3 as follows.
    // (Iteration 0 was just done above.)
    //
    // Iteration 0: |---------------------------3^N--------------------------|
    // Iteration 1: |------3^(N-1)-----|--------------2*3^(N-1)--------------|
    // Iteration 2: |3^(N-2)|2*3^(N-2)-|-(removed)-|--------4*3^(N-2)--------|
    // ...
    //
    // Note that some of the partitions are removed because they are repeates.
    // In the example above, the removed partition is of size 2*3^(N-2), which
    // is the same size of another partition in the tree. In general, when we
    // break up a partition that is not a power of 3, we only generate the
    // partition that is 2/3 because the 1/3 partition is created elsewhere.
    // A partition that is exactly a power of 3 (no factors of 2) has both
    // subpartitions created.
    //

    while (ICET_TRUE) {
        IceTInt last_size;
        IceTInt last_rank;
        IceTInt this_size;
        IceTCommunicator comm_third;
        IceTCommunicator comm_two_thirds;
        IceTContext old_context = icetGetContext();
        int result;

        icetGetIntegerv(ICET_NUM_PROCESSES, &last_size);
        icetGetIntegerv(ICET_RANK, &last_rank);
        this_size = last_size/3;

        if (this_size%3 != 0) {
            // Next smallest comms have no factors of 3. Must be only
            // factors of two, and we have done that.
            break;
        }

        // By simple factoring, we can split the last communicator into one
        // piece a third of its size and another peice 2/3 the size, and
        // those combined will use all the processes.
        comm_third = MakeCommSubset(this_size, 0);
        comm_two_thirds = MakeCommSubset(2*this_size, this_size);

        icetDestroyContext(old_context);
        if (last_rank < this_size) {
            icetCreateContext(comm_third);
            comm_third->Destroy(comm_third);
            if (this_size%2 == 0) {
                // If this size already has a factor of two, we can drop it.
                // See the description above.
                break;
            }
        } else {
            icetCreateContext(comm_two_thirds);
            comm_two_thirds->Destroy(comm_two_thirds);
            this_size *= 2;
        }

        if (this_size < min_size) {
            // Group has gotten too small to handle these tiles.
            break;
        }

        result = SimpleTimingDoParameterStudies();
        if (result != TEST_PASSED) { worst_result = result; }
    }

    icetDestroyContext(icetGetContext());
    icetSetContext(original_context);

    return worst_result;
}

static int SimpleTimingDoScalingStudyRandom()
{
    IceTInt size;
    IceTInt rank;
    IceTInt min_size = g_num_tiles_x*g_num_tiles_y;
    IceTContext original_context = icetGetContext();
    int worst_result = TEST_PASSED;
    IceTInt trial;
    IceTInt *pivots;

    icetGetIntegerv(ICET_NUM_PROCESSES, &size);
    icetGetIntegerv(ICET_RANK, &rank);

    /* Choose pivot points to bifurcate processes. Do them all at once here
     * so the psudorandom numbers do not interfear with those choosen during
     * the rendering. */
    pivots = malloc(sizeof(IceTInt)*g_num_scaling_study_random);
    srand(g_seed);
    for (trial = 0; trial < g_num_scaling_study_random; trial++) {
        pivots[trial] = rand()%size;
    }

    for (trial = 0; trial < g_num_scaling_study_random; trial++) {
        IceTCommunicator left_comm;
        IceTCommunicator right_comm;
        IceTInt left_size;
        IceTInt right_size;
        IceTInt local_size;
        int result;

        /* Print out results from last run. */
        SimpleTimingCollectAndPrintLog();

        left_size = pivots[trial];
        right_size = size-left_size;

        left_comm = MakeCommSubset(left_size, 0);
        right_comm = MakeCommSubset(right_size, left_size);

        if (rank < left_size) {
            icetCreateContext(left_comm);
            left_comm->Destroy(left_comm);
            local_size = left_size;
        } else {
            icetCreateContext(right_comm);
            right_comm->Destroy(right_comm);
            local_size = right_size;
        }

        if (local_size > min_size) {
            result = SimpleTimingDoParameterStudies();
            if (result != TEST_PASSED) { worst_result = result; }
        }

        icetDestroyContext(icetGetContext());
        icetSetContext(original_context);
    }

    free(pivots);

    return worst_result;
}

static int SimpleTimingDoScalingStudies()
{
    int result;
    if (g_do_scaling_study_factor_2_3) {
        result = SimpleTimingDoScalingStudyFactor2_3();
    } else if (g_do_scaling_study_factor_2) {
        result = SimpleTimingDoScalingStudyFactor2();
    } else {
        result = SimpleTimingDoParameterStudies();
    }

    if (g_num_scaling_study_random > 0) {
        int new_result = SimpleTimingDoScalingStudyRandom();
        if (new_result != TEST_PASSED) {
            result = new_result;
        }
    }

    SimpleTimingCollectAndPrintLog();
    return result;
}

int SimpleTimingRun()
{
    IceTInt rank;

    icetGetIntegerv(ICET_RANK, &rank);

    if (rank == 0) {
        printf("HEADER,"
               "num processes,"
               "multi-tile strategy,"
               "single-image strategy,"
               "tiles x,"
               "tiles y,"
               "width,"
               "height,"
               "zoom,"
               "transparent,"
               "interlacing,"
               "collection,"
               "dense images,"
               "max image split,"
               "frame,"
               "render time,"
               "buffer read time,"
               "buffer write time,"
               "compress time,"
               "interlace time,"
               "blend time,"
               "draw time,"
               "composite time,"
               "collect time,"
               "bytes sent,"
               "frame time\n");
    }

    g_timing_log = NULL;
    g_timing_log_size = 0;

    return SimpleTimingDoScalingStudies();
}

int SimpleTiming(int argc, char * argv[])
{
    parse_arguments(argc, argv);

    return run_test(SimpleTimingRun);
}