File: CatalystAdaptor.h

package info (click to toggle)
paraview 5.11.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 497,236 kB
  • sloc: cpp: 3,171,290; ansic: 1,315,072; python: 134,290; xml: 103,324; sql: 65,887; sh: 5,286; javascript: 4,901; yacc: 4,383; java: 3,977; perl: 2,363; lex: 1,909; f90: 1,255; objc: 143; makefile: 119; tcl: 59; pascal: 50; fortran: 29
file content (166 lines) | stat: -rw-r--r-- 5,701 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#ifndef CatalystAdaptor_h
#define CatalystAdaptor_h

#include "FEDataStructures.h"
#include <catalyst.hpp>
#include <cstring>
#include <fstream>
#include <iostream>
#include <string>

namespace CatalystAdaptor
{
static std::vector<std::string> filesToValidate;

/**
 * In this example, we show how we can use Catalysts's C++
 * wrapper around conduit's C API to create Conduit nodes.
 * This is not required. A C++ adaptor can just as
 * conveniently use the Conduit C API to setup the
 * `conduit_node`. However, this example shows that one can
 * indeed use Catalyst's C++ API, if the developer so chooses.
 */
void Initialize(int argc, char* argv[])
{
  conduit_cpp::Node node;
  for (int cc = 1; cc < argc; ++cc)
  {
    if (strcmp(argv[cc], "--output") == 0 && (cc + 1) < argc)
    {
      node["catalyst/pipelines/0/type"].set("io");
      node["catalyst/pipelines/0/filename"].set(argv[cc + 1]);
      node["catalyst/pipelines/0/channel"].set("grid");
      ++cc;
    }
    else if (strcmp(argv[cc], "--exists") == 0 && (cc + 1) < argc)
    {
      filesToValidate.push_back(argv[cc + 1]);
      ++cc;
    }
    else
    {
      const auto path = std::string(argv[cc]);
      // note: one can simply add the script file as follows:
      // node["catalyst/scripts/script" + std::to_string(cc - 1)].set_string(path);

      // alternatively, use this form to pass optional parameters to the script.
      const auto name = "catalyst/scripts/script" + std::to_string(cc - 1);
      node[name + "/filename"].set_string(path);
      node[name + "/args"].append().set_string("argument0");
      node[name + "/args"].append().set_string("argument1=12");
      node[name + "/args"].append().set_string("--argument3");
      node[name + "/args"].append().set_string("--channel-name=grid");
    }
  }

  // indicate that we want to load ParaView-Catalyst
  node["catalyst_load/implementation"].set_string("paraview");
  node["catalyst_load/search_paths/paraview"] = PARAVIEW_IMPL_DIR;

  catalyst_status err = catalyst_initialize(conduit_cpp::c_node(&node));
  if (err != catalyst_status_ok)
  {
    std::cerr << "ERROR: Failed to initialize Catalyst: " << err << std::endl;
  }
}

void Execute(int cycle, double time, Grid& grid, Attributes& attribs)
{
  conduit_cpp::Node exec_params;

  // add time/cycle information
  auto state = exec_params["catalyst/state"];
  state["timestep"].set(cycle);
  state["time"].set(time);

  // add optional execution parameters
  state["parameters"].append().set_string("parameter0");
  state["parameters"].append().set_string("parameter1=42");
  state["parameters"].append().set_string("parameter2=doThing");
  state["parameters"].append().set_string("timeParam=" + std::to_string(time));

  // Add channels.
  // We only have 1 channel here. Let's name it 'grid'.
  auto channel = exec_params["catalyst/channels/grid"];

  // Since this example is using Conduit Mesh Blueprint to define the mesh,
  // we set the channel's type to "mesh".
  channel["type"].set("mesh");

  // now create the mesh.
  auto mesh = channel["data"];

  // start with coordsets (of course, the sequence is not important, just make
  // it easier to think in this order).
  mesh["coordsets/coords/type"].set("uniform");

  const auto* ext = grid.GetExtent();
  mesh["coordsets/coords/dims/i"].set(ext[1] - ext[0] + 1);
  mesh["coordsets/coords/dims/j"].set(ext[3] - ext[2] + 1);
  mesh["coordsets/coords/dims/k"].set(ext[5] - ext[4] + 1);

  double localOrigin[3];
  grid.GetLocalPoint(0, localOrigin);
  mesh["coordsets/coords/origin/x"].set(localOrigin[0]);
  mesh["coordsets/coords/origin/y"].set(localOrigin[1]);
  mesh["coordsets/coords/origin/z"].set(localOrigin[2]);

  const auto spacing = grid.GetSpacing();
  mesh["coordsets/coords/spacing/x"].set(spacing[0]);
  mesh["coordsets/coords/spacing/y"].set(spacing[1]);
  mesh["coordsets/coords/spacing/z"].set(spacing[2]);

  // Next, add topology
  mesh["topologies/mesh/type"].set("uniform");
  mesh["topologies/mesh/coordset"].set("coords");

  // Finally, add fields.
  auto fields = mesh["fields"];
  fields["velocity/association"].set("vertex");
  fields["velocity/topology"].set("mesh");
  fields["velocity/volume_dependent"].set("false");

  // velocity is stored in non-interlaced form (unlike points).
  fields["velocity/values/x"].set_external(
    attribs.GetVelocityArray(), grid.GetNumberOfLocalPoints(), /*offset=*/0);
  fields["velocity/values/y"].set_external(attribs.GetVelocityArray(),
    grid.GetNumberOfLocalPoints(),
    /*offset=*/grid.GetNumberOfLocalPoints() * sizeof(double));
  fields["velocity/values/z"].set_external(attribs.GetVelocityArray(),
    grid.GetNumberOfLocalPoints(),
    /*offset=*/grid.GetNumberOfLocalPoints() * sizeof(double) * 2);

  // pressure is cell-data.
  fields["pressure/association"].set("element");
  fields["pressure/topology"].set("mesh");
  fields["pressure/volume_dependent"].set("false");
  fields["pressure/values"].set_external(attribs.GetPressureArray(), grid.GetNumberOfLocalCells());

  catalyst_status err = catalyst_execute(conduit_cpp::c_node(&exec_params));
  if (err != catalyst_status_ok)
  {
    std::cerr << "ERROR: Failed to execute Catalyst: " << err << std::endl;
  }
}

void Finalize()
{
  conduit_cpp::Node node;
  catalyst_status err = catalyst_finalize(conduit_cpp::c_node(&node));
  if (err != catalyst_status_ok)
  {
    std::cerr << "ERROR: Failed to finalize Catalyst: " << err << std::endl;
  }

  for (const auto& fname : filesToValidate)
  {
    std::ifstream istrm(fname.c_str(), std::ios::binary);
    if (!istrm.is_open())
    {
      std::cerr << "ERROR: Failed to open file '" << fname.c_str() << "'." << std::endl;
    }
  }
}
}

#endif