1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
#ifndef CatalystAdaptor_h
#define CatalystAdaptor_h
#include "FEDataStructures.h"
#include <catalyst.hpp>
#include <cstring>
#include <fstream>
#include <iostream>
#include <string>
namespace CatalystAdaptor
{
static std::vector<std::string> filesToValidate;
/**
* In this example, we show how we can use Catalysts's C++
* wrapper around conduit's C API to create Conduit nodes.
* This is not required. A C++ adaptor can just as
* conveniently use the Conduit C API to setup the
* `conduit_node`. However, this example shows that one can
* indeed use Catalyst's C++ API, if the developer so chooses.
*/
void Initialize(int argc, char* argv[])
{
conduit_cpp::Node node;
for (int cc = 1; cc < argc; ++cc)
{
if (strcmp(argv[cc], "--output") == 0 && (cc + 1) < argc)
{
node["catalyst/pipelines/0/type"].set("io");
node["catalyst/pipelines/0/filename"].set(argv[cc + 1]);
node["catalyst/pipelines/0/channel"].set("grid");
++cc;
}
else if (strcmp(argv[cc], "--exists") == 0 && (cc + 1) < argc)
{
filesToValidate.push_back(argv[cc + 1]);
++cc;
}
else
{
const auto path = std::string(argv[cc]);
// note: one can simply add the script file as follows:
// node["catalyst/scripts/script" + std::to_string(cc - 1)].set_string(path);
// alternatively, use this form to pass optional parameters to the script.
const auto name = "catalyst/scripts/script" + std::to_string(cc - 1);
node[name + "/filename"].set_string(path);
node[name + "/args"].append().set_string("argument0");
node[name + "/args"].append().set_string("argument1=12");
node[name + "/args"].append().set_string("--argument3");
node[name + "/args"].append().set_string("--channel-name=grid");
}
}
// indicate that we want to load ParaView-Catalyst
node["catalyst_load/implementation"].set_string("paraview");
node["catalyst_load/search_paths/paraview"] = PARAVIEW_IMPL_DIR;
catalyst_status err = catalyst_initialize(conduit_cpp::c_node(&node));
if (err != catalyst_status_ok)
{
std::cerr << "ERROR: Failed to initialize Catalyst: " << err << std::endl;
}
}
void Execute(int cycle, double time, Grid& grid, Attributes& attribs)
{
conduit_cpp::Node exec_params;
// add time/cycle information
auto state = exec_params["catalyst/state"];
state["timestep"].set(cycle);
state["time"].set(time);
// add optional execution parameters
state["parameters"].append().set_string("parameter0");
state["parameters"].append().set_string("parameter1=42");
state["parameters"].append().set_string("parameter2=doThing");
state["parameters"].append().set_string("timeParam=" + std::to_string(time));
// Add channels.
// We only have 1 channel here. Let's name it 'grid'.
auto channel = exec_params["catalyst/channels/grid"];
// Since this example is using Conduit Mesh Blueprint to define the mesh,
// we set the channel's type to "mesh".
channel["type"].set("mesh");
// now create the mesh.
auto mesh = channel["data"];
// start with coordsets (of course, the sequence is not important, just make
// it easier to think in this order).
mesh["coordsets/coords/type"].set("uniform");
const auto* ext = grid.GetExtent();
mesh["coordsets/coords/dims/i"].set(ext[1] - ext[0] + 1);
mesh["coordsets/coords/dims/j"].set(ext[3] - ext[2] + 1);
mesh["coordsets/coords/dims/k"].set(ext[5] - ext[4] + 1);
double localOrigin[3];
grid.GetLocalPoint(0, localOrigin);
mesh["coordsets/coords/origin/x"].set(localOrigin[0]);
mesh["coordsets/coords/origin/y"].set(localOrigin[1]);
mesh["coordsets/coords/origin/z"].set(localOrigin[2]);
const auto spacing = grid.GetSpacing();
mesh["coordsets/coords/spacing/x"].set(spacing[0]);
mesh["coordsets/coords/spacing/y"].set(spacing[1]);
mesh["coordsets/coords/spacing/z"].set(spacing[2]);
// Next, add topology
mesh["topologies/mesh/type"].set("uniform");
mesh["topologies/mesh/coordset"].set("coords");
// Finally, add fields.
auto fields = mesh["fields"];
fields["velocity/association"].set("vertex");
fields["velocity/topology"].set("mesh");
fields["velocity/volume_dependent"].set("false");
// velocity is stored in non-interlaced form (unlike points).
fields["velocity/values/x"].set_external(
attribs.GetVelocityArray(), grid.GetNumberOfLocalPoints(), /*offset=*/0);
fields["velocity/values/y"].set_external(attribs.GetVelocityArray(),
grid.GetNumberOfLocalPoints(),
/*offset=*/grid.GetNumberOfLocalPoints() * sizeof(double));
fields["velocity/values/z"].set_external(attribs.GetVelocityArray(),
grid.GetNumberOfLocalPoints(),
/*offset=*/grid.GetNumberOfLocalPoints() * sizeof(double) * 2);
// pressure is cell-data.
fields["pressure/association"].set("element");
fields["pressure/topology"].set("mesh");
fields["pressure/volume_dependent"].set("false");
fields["pressure/values"].set_external(attribs.GetPressureArray(), grid.GetNumberOfLocalCells());
catalyst_status err = catalyst_execute(conduit_cpp::c_node(&exec_params));
if (err != catalyst_status_ok)
{
std::cerr << "ERROR: Failed to execute Catalyst: " << err << std::endl;
}
}
void Finalize()
{
conduit_cpp::Node node;
catalyst_status err = catalyst_finalize(conduit_cpp::c_node(&node));
if (err != catalyst_status_ok)
{
std::cerr << "ERROR: Failed to finalize Catalyst: " << err << std::endl;
}
for (const auto& fname : filesToValidate)
{
std::ifstream istrm(fname.c_str(), std::ios::binary);
if (!istrm.is_open())
{
std::cerr << "ERROR: Failed to open file '" << fname.c_str() << "'." << std::endl;
}
}
}
}
#endif
|