File: CatalystAdaptor.h

package info (click to toggle)
paraview 5.11.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 497,236 kB
  • sloc: cpp: 3,171,290; ansic: 1,315,072; python: 134,290; xml: 103,324; sql: 65,887; sh: 5,286; javascript: 4,901; yacc: 4,383; java: 3,977; perl: 2,363; lex: 1,909; f90: 1,255; objc: 143; makefile: 119; tcl: 59; pascal: 50; fortran: 29
file content (152 lines) | stat: -rw-r--r-- 6,081 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#ifndef CatalystAdaptor_h
#define CatalystAdaptor_h

#include "FEDataStructures.h"
#include <catalyst.hpp>

#include <iostream>
#include <numeric>
#include <string>
#include <vector>

namespace CatalystAdaptor
{

/**
 * In this example, we show how we can use Catalysts's C++
 * wrapper around conduit's C API to create Conduit nodes.
 * This is not required. A C++ adaptor can just as
 * conveniently use the Conduit C API to setup the
 * `conduit_node`. However, this example shows that one can
 * indeed use Catalyst's C++ API, if the developer so chooses.
 */
void Initialize(int argc, char* argv[])
{
  conduit_cpp::Node node;
  for (int cc = 1; cc < argc; ++cc)
  {
    node["catalyst/scripts/script" + std::to_string(cc - 1)].set_string(argv[cc]);
  }
  node["catalyst_load/implementation"] = "paraview";
  node["catalyst_load/search_paths/paraview"] = PARAVIEW_IMPL_DIR;
  catalyst_status err = catalyst_initialize(conduit_cpp::c_node(&node));
  if (err != catalyst_status_ok)
  {
    std::cerr << "Failed to initialize Catalyst: " << err << std::endl;
  }
}

void Execute(int cycle, double time, Grid& grid, Attributes& attribs, Particles& particles)
{
  conduit_cpp::Node exec_params;

  // add time/cycle information
  auto state = exec_params["catalyst/state"];
  state["timestep"].set(cycle);
  state["time"].set(time);

  // Add channels.
  // We have 2 channels here. First once is called 'grid'.
  auto channel_grid = exec_params["catalyst/channels/grid"];

  // Since this example is using Conduit Mesh Blueprint to define the mesh,
  // we set the channel_grid's type to "mesh".
  channel_grid["type"].set_string("mesh");

  // now create the mesh.
  auto mesh_grid = channel_grid["data"];

  // start with coordsets (of course, the sequence is not important, just make
  // it easier to think in this order).
  mesh_grid["coordsets/coords/type"].set_string("explicit");

  // We don't use the conduit_cpp::Node::set(std::vector<..>) API since that deep
  // copies. For zero-copy, we use the set_.._ptr(..) API.
  mesh_grid["coordsets/coords/values/x"].set_external(
    grid.GetPointsArray(), grid.GetNumberOfPoints(), /*offset=*/0, /*stride=*/3 * sizeof(double));
  mesh_grid["coordsets/coords/values/y"].set_external(grid.GetPointsArray(),
    grid.GetNumberOfPoints(),
    /*offset=*/sizeof(double), /*stride=*/3 * sizeof(double));
  mesh_grid["coordsets/coords/values/z"].set_external(grid.GetPointsArray(),
    grid.GetNumberOfPoints(),
    /*offset=*/2 * sizeof(double), /*stride=*/3 * sizeof(double));

  // Next, add topology
  mesh_grid["topologies/mesh/type"].set_string("unstructured");
  mesh_grid["topologies/mesh/coordset"].set_string("coords");
  mesh_grid["topologies/mesh/elements/shape"].set_string("hex");
  mesh_grid["topologies/mesh/elements/connectivity"].set(
    grid.GetCellPoints(0), grid.GetNumberOfCells() * 8);

  // Finally, add fields.
  auto fields_grid = mesh_grid["fields"];
  fields_grid["velocity/association"].set_string("vertex");
  fields_grid["velocity/topology"].set_string("mesh");
  fields_grid["velocity/volume_dependent"].set_string("false");

  // velocity is stored in non-interlaced form (unlike points).
  fields_grid["velocity/values/x"].set_external(
    attribs.GetVelocityArray(), grid.GetNumberOfPoints(), /*offset=*/0);
  fields_grid["velocity/values/y"].set_external(attribs.GetVelocityArray(),
    grid.GetNumberOfPoints(),
    /*offset=*/grid.GetNumberOfPoints() * sizeof(double));
  fields_grid["velocity/values/z"].set_external(attribs.GetVelocityArray(),
    grid.GetNumberOfPoints(),
    /*offset=*/grid.GetNumberOfPoints() * sizeof(double) * 2);

  // pressure is cell-data.
  fields_grid["pressure/association"].set_string("element");
  fields_grid["pressure/topology"].set_string("mesh");
  fields_grid["pressure/volume_dependent"].set_string("false");
  fields_grid["pressure/values"].set_external(attribs.GetPressureArray(), grid.GetNumberOfCells());

  // Now add the second channel, called "particles".
  auto channel_particles = exec_params["catalyst/channels/particles"];

  // make the particles' time update every other step of the mesh's
  channel_particles["state/cycle"].set(cycle - (cycle % 2));
  channel_particles["state/time"].set(time - (cycle % 2) * 0.1);
  channel_particles["state/multiblock"].set(1);

  // Since this example is using Conduit Mesh Blueprint to define the mesh,
  // we set the channel_particles's type to "mesh".
  channel_particles["type"].set_string("mesh");

  // now create the mesh.
  auto mesh_particles = channel_particles["data"];
  mesh_particles["coordsets/coords/type"].set_string("explicit");
  mesh_particles["coordsets/coords/values/x"].set_external(particles.GetPointsArray(),
    particles.GetNumberOfPoints(), /*offset=*/0, /*stride=*/3 * sizeof(double));
  mesh_particles["coordsets/coords/values/y"].set_external(particles.GetPointsArray(),
    particles.GetNumberOfPoints(), /*offset=*/sizeof(double), /*stride=*/3 * sizeof(double));
  mesh_particles["coordsets/coords/values/z"].set_external(particles.GetPointsArray(),
    particles.GetNumberOfPoints(), /*offset=*/2 * sizeof(double), /*stride=*/3 * sizeof(double));

  // now, the topology.
  mesh_particles["topologies/mesh/type"].set_string("unstructured");
  mesh_particles["topologies/mesh/coordset"].set_string("coords");
  mesh_particles["topologies/mesh/elements/shape"].set_string("point");
  std::vector<conduit_int64> connectivity(particles.GetNumberOfPoints());
  std::iota(connectivity.begin(), connectivity.end(), 0);
  mesh_particles["topologies/mesh/elements/connectivity"].set_external(
    &connectivity[0], particles.GetNumberOfPoints());

  catalyst_status err = catalyst_execute(conduit_cpp::c_node(&exec_params));
  if (err != catalyst_status_ok)
  {
    std::cerr << "Failed to execute Catalyst: " << err << std::endl;
  }
}

void Finalize()
{
  conduit_cpp::Node node;
  catalyst_status err = catalyst_finalize(conduit_cpp::c_node(&node));
  if (err != catalyst_status_ok)
  {
    std::cerr << "Failed to finalize Catalyst: " << err << std::endl;
  }
}
}

#endif