1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
#ifndef CatalystAdaptor_h
#define CatalystAdaptor_h
#include "FEDataStructures.h"
#include <catalyst.hpp>
#include <iostream>
#include <numeric>
#include <string>
#include <vector>
namespace CatalystAdaptor
{
/**
* In this example, we show how we can use Catalysts's C++
* wrapper around conduit's C API to create Conduit nodes.
* This is not required. A C++ adaptor can just as
* conveniently use the Conduit C API to setup the
* `conduit_node`. However, this example shows that one can
* indeed use Catalyst's C++ API, if the developer so chooses.
*/
void Initialize(int argc, char* argv[])
{
conduit_cpp::Node node;
for (int cc = 1; cc < argc; ++cc)
{
node["catalyst/scripts/script" + std::to_string(cc - 1)].set_string(argv[cc]);
}
node["catalyst_load/implementation"] = "paraview";
node["catalyst_load/search_paths/paraview"] = PARAVIEW_IMPL_DIR;
catalyst_status err = catalyst_initialize(conduit_cpp::c_node(&node));
if (err != catalyst_status_ok)
{
std::cerr << "Failed to initialize Catalyst: " << err << std::endl;
}
}
void Execute(int cycle, double time, Grid& grid, Attributes& attribs, Particles& particles)
{
conduit_cpp::Node exec_params;
// add time/cycle information
auto state = exec_params["catalyst/state"];
state["timestep"].set(cycle);
state["time"].set(time);
// Add channels.
// We have 2 channels here. First once is called 'grid'.
auto channel_grid = exec_params["catalyst/channels/grid"];
// Since this example is using Conduit Mesh Blueprint to define the mesh,
// we set the channel_grid's type to "mesh".
channel_grid["type"].set_string("mesh");
// now create the mesh.
auto mesh_grid = channel_grid["data"];
// start with coordsets (of course, the sequence is not important, just make
// it easier to think in this order).
mesh_grid["coordsets/coords/type"].set_string("explicit");
// We don't use the conduit_cpp::Node::set(std::vector<..>) API since that deep
// copies. For zero-copy, we use the set_.._ptr(..) API.
mesh_grid["coordsets/coords/values/x"].set_external(
grid.GetPointsArray(), grid.GetNumberOfPoints(), /*offset=*/0, /*stride=*/3 * sizeof(double));
mesh_grid["coordsets/coords/values/y"].set_external(grid.GetPointsArray(),
grid.GetNumberOfPoints(),
/*offset=*/sizeof(double), /*stride=*/3 * sizeof(double));
mesh_grid["coordsets/coords/values/z"].set_external(grid.GetPointsArray(),
grid.GetNumberOfPoints(),
/*offset=*/2 * sizeof(double), /*stride=*/3 * sizeof(double));
// Next, add topology
mesh_grid["topologies/mesh/type"].set_string("unstructured");
mesh_grid["topologies/mesh/coordset"].set_string("coords");
mesh_grid["topologies/mesh/elements/shape"].set_string("hex");
mesh_grid["topologies/mesh/elements/connectivity"].set(
grid.GetCellPoints(0), grid.GetNumberOfCells() * 8);
// Finally, add fields.
auto fields_grid = mesh_grid["fields"];
fields_grid["velocity/association"].set_string("vertex");
fields_grid["velocity/topology"].set_string("mesh");
fields_grid["velocity/volume_dependent"].set_string("false");
// velocity is stored in non-interlaced form (unlike points).
fields_grid["velocity/values/x"].set_external(
attribs.GetVelocityArray(), grid.GetNumberOfPoints(), /*offset=*/0);
fields_grid["velocity/values/y"].set_external(attribs.GetVelocityArray(),
grid.GetNumberOfPoints(),
/*offset=*/grid.GetNumberOfPoints() * sizeof(double));
fields_grid["velocity/values/z"].set_external(attribs.GetVelocityArray(),
grid.GetNumberOfPoints(),
/*offset=*/grid.GetNumberOfPoints() * sizeof(double) * 2);
// pressure is cell-data.
fields_grid["pressure/association"].set_string("element");
fields_grid["pressure/topology"].set_string("mesh");
fields_grid["pressure/volume_dependent"].set_string("false");
fields_grid["pressure/values"].set_external(attribs.GetPressureArray(), grid.GetNumberOfCells());
// Now add the second channel, called "particles".
auto channel_particles = exec_params["catalyst/channels/particles"];
// make the particles' time update every other step of the mesh's
channel_particles["state/cycle"].set(cycle - (cycle % 2));
channel_particles["state/time"].set(time - (cycle % 2) * 0.1);
channel_particles["state/multiblock"].set(1);
// Since this example is using Conduit Mesh Blueprint to define the mesh,
// we set the channel_particles's type to "mesh".
channel_particles["type"].set_string("mesh");
// now create the mesh.
auto mesh_particles = channel_particles["data"];
mesh_particles["coordsets/coords/type"].set_string("explicit");
mesh_particles["coordsets/coords/values/x"].set_external(particles.GetPointsArray(),
particles.GetNumberOfPoints(), /*offset=*/0, /*stride=*/3 * sizeof(double));
mesh_particles["coordsets/coords/values/y"].set_external(particles.GetPointsArray(),
particles.GetNumberOfPoints(), /*offset=*/sizeof(double), /*stride=*/3 * sizeof(double));
mesh_particles["coordsets/coords/values/z"].set_external(particles.GetPointsArray(),
particles.GetNumberOfPoints(), /*offset=*/2 * sizeof(double), /*stride=*/3 * sizeof(double));
// now, the topology.
mesh_particles["topologies/mesh/type"].set_string("unstructured");
mesh_particles["topologies/mesh/coordset"].set_string("coords");
mesh_particles["topologies/mesh/elements/shape"].set_string("point");
std::vector<conduit_int64> connectivity(particles.GetNumberOfPoints());
std::iota(connectivity.begin(), connectivity.end(), 0);
mesh_particles["topologies/mesh/elements/connectivity"].set_external(
&connectivity[0], particles.GetNumberOfPoints());
catalyst_status err = catalyst_execute(conduit_cpp::c_node(&exec_params));
if (err != catalyst_status_ok)
{
std::cerr << "Failed to execute Catalyst: " << err << std::endl;
}
}
void Finalize()
{
conduit_cpp::Node node;
catalyst_status err = catalyst_finalize(conduit_cpp::c_node(&node));
if (err != catalyst_status_ok)
{
std::cerr << "Failed to finalize Catalyst: " << err << std::endl;
}
}
}
#endif
|