1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
#ifndef CatalystAdaptor_h
#define CatalystAdaptor_h
#include "FEDataStructures.h"
#include <catalyst.hpp>
#include <iostream>
#include <numeric>
#include <string>
#include <vector>
namespace CatalystAdaptor
{
/**
* In this example, we show how we can use Catalysts's C++
* wrapper around conduit's C API to create Conduit nodes.
* This is not required. A C++ adaptor can just as
* conveniently use the Conduit C API to setup the
* `conduit_node`. However, this example shows that one can
* indeed use Catalyst's C++ API, if the developer so chooses.
*/
void Initialize(int argc, char* argv[])
{
conduit_cpp::Node node;
for (int cc = 1; cc < argc; ++cc)
{
node["catalyst/scripts/script" + std::to_string(cc - 1)].set_string(argv[cc]);
}
node["catalyst_load/implementation"] = "paraview";
node["catalyst_load/search_paths/paraview"] = PARAVIEW_IMPL_DIR;
catalyst_status err = catalyst_initialize(conduit_cpp::c_node(&node));
if (err != catalyst_status_ok)
{
std::cerr << "Failed to initialize Catalyst: " << err << std::endl;
}
}
void Execute(int cycle, double time, Grid& grid, Attributes& attribs, Particles& particles)
{
conduit_cpp::Node exec_params;
// add time/cycle information
auto state = exec_params["catalyst/state"];
state["timestep"].set(cycle);
state["time"].set(time);
// Add channels.
auto channel = exec_params["catalyst/channels/input"];
// Since this example is using "multimesh" protocol
// we set the channel's type to "multimesh".
channel["type"].set_string("multimesh");
// now create 1st mesh named "grid"
auto mesh_grid = channel["data/grid"];
// start with coordsets (of course, the sequence is not important, just make
// it easier to think in this order).
mesh_grid["coordsets/coords/type"].set_string("explicit");
// We don't use the conduit_cpp::Node::set(std::vector<..>) API since that deep
// copies. For zero-copy, we use the set_.._ptr(..) API.
mesh_grid["coordsets/coords/values/x"].set_external(
grid.GetPointsArray(), grid.GetNumberOfPoints(), /*offset=*/0, /*stride=*/3 * sizeof(double));
mesh_grid["coordsets/coords/values/y"].set_external(grid.GetPointsArray(),
grid.GetNumberOfPoints(),
/*offset=*/sizeof(double), /*stride=*/3 * sizeof(double));
mesh_grid["coordsets/coords/values/z"].set_external(grid.GetPointsArray(),
grid.GetNumberOfPoints(),
/*offset=*/2 * sizeof(double), /*stride=*/3 * sizeof(double));
// Next, add topology
mesh_grid["topologies/mesh/type"].set_string("unstructured");
mesh_grid["topologies/mesh/coordset"].set_string("coords");
mesh_grid["topologies/mesh/elements/shape"].set_string("hex");
mesh_grid["topologies/mesh/elements/connectivity"].set(
grid.GetCellPoints(0), grid.GetNumberOfCells() * 8);
// Finally, add fields.
auto fields_grid = mesh_grid["fields"];
fields_grid["velocity/association"].set_string("vertex");
fields_grid["velocity/topology"].set_string("mesh");
fields_grid["velocity/volume_dependent"].set_string("false");
// Field data (aka meta-data) are declared in the mesh "state" node.
auto mesh_grid_state_fields = mesh_grid["state/fields"];
mesh_grid_state_fields["author"] = "Kitware";
mesh_grid_state_fields["mesh time"] = time;
mesh_grid_state_fields["mesh timestep"] = cycle;
mesh_grid_state_fields["mesh external data"].set_external(
grid.GetPointsArray(), grid.GetNumberOfPoints(), 0, 3 * sizeof(double));
// velocity is stored in non-interlaced form (unlike points).
fields_grid["velocity/values/x"].set_external(
attribs.GetVelocityArray(), grid.GetNumberOfPoints(), /*offset=*/0);
fields_grid["velocity/values/y"].set_external(attribs.GetVelocityArray(),
grid.GetNumberOfPoints(),
/*offset=*/grid.GetNumberOfPoints() * sizeof(double));
fields_grid["velocity/values/z"].set_external(attribs.GetVelocityArray(),
grid.GetNumberOfPoints(),
/*offset=*/grid.GetNumberOfPoints() * sizeof(double) * 2);
// pressure is cell-data.
fields_grid["pressure/association"].set_string("element");
fields_grid["pressure/topology"].set_string("mesh");
fields_grid["pressure/volume_dependent"].set_string("false");
fields_grid["pressure/values"].set_external(attribs.GetPressureArray(), grid.GetNumberOfCells());
// now create 2st mesh named called "particles"
auto mesh_particles = channel["data/particles"];
mesh_particles["coordsets/coords/type"].set_string("explicit");
mesh_particles["coordsets/coords/values/x"].set_external(particles.GetPointsArray(),
particles.GetNumberOfPoints(), /*offset=*/0, /*stride=*/3 * sizeof(double));
mesh_particles["coordsets/coords/values/y"].set_external(particles.GetPointsArray(),
particles.GetNumberOfPoints(), /*offset=*/sizeof(double), /*stride=*/3 * sizeof(double));
mesh_particles["coordsets/coords/values/z"].set_external(particles.GetPointsArray(),
particles.GetNumberOfPoints(), /*offset=*/2 * sizeof(double), /*stride=*/3 * sizeof(double));
// now, the topology.
mesh_particles["topologies/mesh/type"].set_string("unstructured");
mesh_particles["topologies/mesh/coordset"].set_string("coords");
mesh_particles["topologies/mesh/elements/shape"].set_string("point");
std::vector<conduit_int64> connectivity(particles.GetNumberOfPoints());
std::iota(connectivity.begin(), connectivity.end(), 0);
mesh_particles["topologies/mesh/elements/connectivity"].set_external(
&connectivity[0], particles.GetNumberOfPoints());
// now, add assembly
// Assembly:
// > Mesh
// (grid)
// > Particles
// (particles)
// > Collection
// > Sub Collection
// [(grid), (particles)]
auto assembly = channel["assembly"];
assembly["Grid"].set_string("grid");
assembly["Particles"].set_string("particles");
auto subCollection = assembly["Collection/Sub Collection"];
subCollection.append().set_string("grid");
subCollection.append().set_string("particles");
catalyst_status err = catalyst_execute(conduit_cpp::c_node(&exec_params));
if (err != catalyst_status_ok)
{
std::cerr << "Failed to execute Catalyst: " << err << std::endl;
}
}
void Finalize()
{
conduit_cpp::Node node;
catalyst_status err = catalyst_finalize(conduit_cpp::c_node(&node));
if (err != catalyst_status_ok)
{
std::cerr << "Failed to finalize Catalyst: " << err << std::endl;
}
}
}
#endif
|