File: CatalystAdaptor.h

package info (click to toggle)
paraview 5.11.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 497,236 kB
  • sloc: cpp: 3,171,290; ansic: 1,315,072; python: 134,290; xml: 103,324; sql: 65,887; sh: 5,286; javascript: 4,901; yacc: 4,383; java: 3,977; perl: 2,363; lex: 1,909; f90: 1,255; objc: 143; makefile: 119; tcl: 59; pascal: 50; fortran: 29
file content (132 lines) | stat: -rw-r--r-- 4,782 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#ifndef CatalystAdaptor_h
#define CatalystAdaptor_h

#include "FEDataStructures.h"
#include <catalyst.hpp>

#include <iostream>
#include <string>

namespace CatalystAdaptor
{

/**
 * In this example, we show how we can use Catalysts's C++
 * wrapper around conduit's C API to create Conduit nodes.
 * This is not required. A C++ adaptor can just as
 * conveniently use the Conduit C API to setup the
 * `conduit_node`. However, this example shows that one can
 * indeed use Catalyst's C++ API, if the developer so chooses.
 */
void Initialize(int argc, char* argv[])
{
  conduit_cpp::Node node;
  for (int cc = 1; cc < argc; ++cc)
  {
    node["catalyst/scripts/script" + std::to_string(cc - 1)].set_string(argv[cc]);
  }
  node["catalyst_load/implementation"] = "paraview";
  node["catalyst_load/search_paths/paraview"] = PARAVIEW_IMPL_DIR;
  catalyst_status err = catalyst_initialize(conduit_cpp::c_node(&node));
  if (err != catalyst_status_ok)
  {
    std::cerr << "Failed to initialize Catalyst: " << err << std::endl;
  }
}

void Execute(int cycle, double time, Grid& grid, Attributes& attribs)
{
  conduit_cpp::Node exec_params;

  // add time/cycle information
  auto state = exec_params["catalyst/state"];
  state["timestep"].set(cycle);
  state["time"].set(time);

  // Add channels.
  // We only have 1 channel here. Let's name it 'grid'.
  auto channel = exec_params["catalyst/channels/grid"];

  // Since this example is using Conduit Mesh Blueprint to define the mesh,
  // we set the channel's type to "mesh".
  channel["type"].set("mesh");

  // now create the mesh.
  auto mesh = channel["data"];

  // start with coordsets (of course, the sequence is not important, just make
  // it easier to think in this order).
  mesh["coordsets/coords/type"].set("explicit");

  mesh["coordsets/coords/values/x"].set_external(const_cast<double*>(&grid.GetPoints()[0]),
    grid.GetNumberOfPoints(), /*offset=*/0, /*stride=*/3 * sizeof(double));
  mesh["coordsets/coords/values/y"].set_external(const_cast<double*>(&grid.GetPoints()[0]),
    grid.GetNumberOfPoints(),
    /*offset=*/sizeof(double), /*stride=*/3 * sizeof(double));
  mesh["coordsets/coords/values/z"].set_external(const_cast<double*>(&grid.GetPoints()[0]),
    grid.GetNumberOfPoints(),
    /*offset=*/2 * sizeof(double), /*stride=*/3 * sizeof(double));

  // Next, add topology
  mesh["topologies/mesh/type"].set("unstructured");
  mesh["topologies/mesh/coordset"].set("coords");

  // add elements
  using VecT = std::vector<unsigned int>;

  mesh["topologies/mesh/elements/shape"].set("polyhedral");
  mesh["topologies/mesh/elements/connectivity"].set_external(
    const_cast<VecT&>(grid.GetPolyhedralCells().Connectivity));
  mesh["topologies/mesh/elements/sizes"].set_external(
    const_cast<VecT&>(grid.GetPolyhedralCells().Sizes));
  mesh["topologies/mesh/elements/offsets"].set_external(
    const_cast<VecT&>(grid.GetPolyhedralCells().Offsets));

  // add faces (aka subelements)
  mesh["topologies/mesh/subelements/shape"].set("polygonal");
  mesh["topologies/mesh/subelements/connectivity"].set_external(
    const_cast<VecT&>(grid.GetPolygonalFaces().Connectivity));
  mesh["topologies/mesh/subelements/sizes"].set_external(
    const_cast<VecT&>(grid.GetPolygonalFaces().Sizes));
  mesh["topologies/mesh/subelements/offsets"].set_external(
    const_cast<VecT&>(grid.GetPolygonalFaces().Offsets));

  // Finally, add fields.
  auto fields = mesh["fields"];
  fields["velocity/association"].set("vertex");
  fields["velocity/topology"].set("mesh");
  fields["velocity/volume_dependent"].set("false");

  // velocity is stored in non-interlaced form (unlike points).
  fields["velocity/values/x"].set_external(
    attribs.GetVelocityArray(), grid.GetNumberOfPoints(), /*offset=*/0);
  fields["velocity/values/y"].set_external(attribs.GetVelocityArray(), grid.GetNumberOfPoints(),
    /*offset=*/grid.GetNumberOfPoints() * sizeof(double));
  fields["velocity/values/z"].set_external(attribs.GetVelocityArray(), grid.GetNumberOfPoints(),
    /*offset=*/grid.GetNumberOfPoints() * sizeof(double) * 2);

  // pressure is cell-data.
  fields["pressure/association"].set("element");
  fields["pressure/topology"].set("mesh");
  fields["pressure/volume_dependent"].set("false");
  fields["pressure/values"].set_external(attribs.GetPressureArray(), grid.GetNumberOfCells());

  catalyst_status err = catalyst_execute(conduit_cpp::c_node(&exec_params));
  if (err != catalyst_status_ok)
  {
    std::cerr << "Failed to execute Catalyst: " << err << std::endl;
  }
}

void Finalize()
{
  conduit_cpp::Node node;
  catalyst_status err = catalyst_finalize(conduit_cpp::c_node(&node));
  if (err != catalyst_status_ok)
  {
    std::cerr << "Failed to finalize Catalyst: " << err << std::endl;
  }
}
}

#endif