1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
/*=========================================================================
Program: ParaView
Module: vtkDataObjectToConduit.h
Copyright (c) Kitware, Inc.
All rights reserved.
See Copyright.txt or http://www.paraview.org/HTML/Copyright.html for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#ifndef CatalystAdaptor_h
#define CatalystAdaptor_h
#include "FEDataStructures.h"
#include <catalyst.hpp>
#include <iostream>
#include <string>
namespace CatalystAdaptor
{
/**
* In this example, we show how we can use Catalysts's C++
* wrapper around conduit's C API to create Conduit nodes.
* This is not required. A C++ adaptor can just as
* conveniently use the Conduit C API to setup the
* `conduit_node`. However, this example shows that one can
* indeed use Catalyst's C++ API, if the developer so chooses.
*/
void Initialize(int argc, char* argv[])
{
conduit_cpp::Node node;
for (int cc = 1; cc < argc; ++cc)
{
std::string file_path = argv[cc];
if (file_path.size() > 4 && file_path.substr(file_path.size() - 4, 4) == ".xml")
{
node["catalyst/proxies/proxy" + std::to_string(cc - 1)].set_string(argv[cc]);
}
else
{
node["catalyst/scripts/script" + std::to_string(cc - 1)].set_string(argv[cc]);
}
}
node["catalyst_load/implementation"] = "paraview";
node["catalyst_load/search_paths/paraview"] = PARAVIEW_IMPL_DIR;
catalyst_status err = catalyst_initialize(conduit_cpp::c_node(&node));
if (err != catalyst_status_ok)
{
std::cerr << "Failed to initialize Catalyst: " << err << std::endl;
}
}
void AddStateInformation(conduit_cpp::Node& exec_params, int cycle, double time)
{
// add time/cycle information
auto state = exec_params["catalyst/state"];
state["timestep"].set(cycle);
state["time"].set(time);
}
void AddGridChannel(conduit_cpp::Node& exec_params, Grid& grid, Attributes& attribs)
{
// Add channels.
// We only have 1 channel here. Let's name it 'grid'.
auto channel = exec_params["catalyst/channels/grid"];
// Since this example is using Conduit Mesh Blueprint to define the mesh,
// we set the channel's type to "mesh".
channel["type"].set("mesh");
// now create the mesh.
auto mesh = channel["data"];
// start with coordsets (of course, the sequence is not important, just make
// it easier to think in this order).
mesh["coordsets/coords/type"].set("explicit");
mesh["coordsets/coords/values/x"].set_external(
grid.GetPointsArray(), grid.GetNumberOfPoints(), /*offset=*/0, /*stride=*/3 * sizeof(double));
mesh["coordsets/coords/values/y"].set_external(grid.GetPointsArray(), grid.GetNumberOfPoints(),
/*offset=*/sizeof(double), /*stride=*/3 * sizeof(double));
mesh["coordsets/coords/values/z"].set_external(grid.GetPointsArray(), grid.GetNumberOfPoints(),
/*offset=*/2 * sizeof(double), /*stride=*/3 * sizeof(double));
// Next, add topology
mesh["topologies/mesh/type"].set("unstructured");
mesh["topologies/mesh/coordset"].set("coords");
mesh["topologies/mesh/elements/shape"].set("hex");
mesh["topologies/mesh/elements/connectivity"].set_external(
grid.GetCellPoints(0), grid.GetNumberOfCells() * 8);
// Finally, add fields.
auto fields = mesh["fields"];
fields["velocity/association"].set("vertex");
fields["velocity/topology"].set("mesh");
fields["velocity/volume_dependent"].set("false");
// velocity is stored in non-interlaced form (unlike points).
fields["velocity/values/x"].set_external(
attribs.GetVelocityArray(), grid.GetNumberOfPoints(), /*offset=*/0);
fields["velocity/values/y"].set_external(attribs.GetVelocityArray(), grid.GetNumberOfPoints(),
/*offset=*/grid.GetNumberOfPoints() * sizeof(double));
fields["velocity/values/z"].set_external(attribs.GetVelocityArray(), grid.GetNumberOfPoints(),
/*offset=*/grid.GetNumberOfPoints() * sizeof(double) * 2);
// pressure is cell-data.
fields["pressure/association"].set("element");
fields["pressure/topology"].set("mesh");
fields["pressure/volume_dependent"].set("false");
fields["pressure/values"].set_external(attribs.GetPressureArray(), grid.GetNumberOfCells());
}
void AddSteerableChannel(conduit_cpp::Node& exec_params)
{
auto steerable = exec_params["catalyst/channels/steerable"];
steerable["type"].set("mesh");
auto steerable_mesh = steerable["data"];
steerable_mesh["coordsets/coords/type"].set_string("explicit");
steerable_mesh["coordsets/coords/values/x"].set_float64_vector({ 1 });
steerable_mesh["coordsets/coords/values/y"].set_float64_vector({ 2 });
steerable_mesh["coordsets/coords/values/z"].set_float64_vector({ 3 });
steerable_mesh["topologies/mesh/type"].set("unstructured");
steerable_mesh["topologies/mesh/coordset"].set("coords");
steerable_mesh["topologies/mesh/elements/shape"].set("point");
steerable_mesh["topologies/mesh/elements/connectivity"].set_int32_vector({ 0 });
steerable_mesh["fields/steerable/association"].set("vertex");
steerable_mesh["fields/steerable/topology"].set("mesh");
steerable_mesh["fields/steerable/volume_dependent"].set("false");
steerable_mesh["fields/steerable/values"].set_int32_vector({ 2 });
}
void Execute(int cycle, double time, Grid& grid, Attributes& attribs)
{
conduit_cpp::Node exec_params;
AddStateInformation(exec_params, cycle, time);
AddGridChannel(exec_params, grid, attribs);
AddSteerableChannel(exec_params);
catalyst_status err = catalyst_execute(conduit_cpp::c_node(&exec_params));
if (err != catalyst_status_ok)
{
std::cerr << "Failed to execute Catalyst: " << err << std::endl;
}
}
void Results(unsigned int timeStep)
{
conduit_cpp::Node results;
catalyst_status err = catalyst_results(conduit_cpp::c_node(&results));
if (err != catalyst_status_ok)
{
std::cerr << "Failed to execute Catalyst: " << err << std::endl;
}
else
{
std::cout << "Result Node dump:" << std::endl;
results.print();
const std::string x_value_path = "catalyst/steerable/coordsets/coords/values/x";
if (results.has_path(x_value_path))
{
double expected_value = timeStep * 0.1;
auto node = results[x_value_path].as_float64_ptr();
if (node[0] != expected_value)
{
std::cerr << "Wrong value: " << node[0] << " expected: " << expected_value << std::endl;
}
}
else
{
std::cerr << "key: [" << x_value_path << "] not found!" << std::endl;
}
const std::string field_values_path = "catalyst/steerable/fields/type/values";
if (results.has_path(field_values_path))
{
int expected_value = timeStep % 3;
auto node = results[field_values_path].as_int_ptr();
if (node[0] != expected_value)
{
std::cerr << "Wrong value: " << node[0] << " expected: " << expected_value << std::endl;
}
}
else
{
std::cerr << "key: [" << field_values_path << "] not found!" << std::endl;
}
}
}
void Finalize()
{
conduit_cpp::Node node;
catalyst_status err = catalyst_finalize(conduit_cpp::c_node(&node));
if (err != catalyst_status_ok)
{
std::cerr << "Failed to finalize Catalyst: " << err << std::endl;
}
}
}
#endif
|