1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkParametricBohemianDome.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkParametricBohemianDome.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
VTK_ABI_NAMESPACE_BEGIN
vtkStandardNewMacro(vtkParametricBohemianDome);
//----------------------------------------------------------------------------//
vtkParametricBohemianDome::vtkParametricBohemianDome()
: A(0.5)
, B(1.5)
, C(1.0)
{
// Preset triangulation parameters
this->MinimumU = -vtkMath::Pi();
this->MaximumU = vtkMath::Pi();
this->MinimumV = -vtkMath::Pi();
this->MaximumV = vtkMath::Pi();
this->JoinU = 1;
this->JoinV = 1;
this->TwistU = 0;
this->TwistV = 1;
this->ClockwiseOrdering = 0;
this->DerivativesAvailable = 1;
}
//----------------------------------------------------------------------------//
vtkParametricBohemianDome::~vtkParametricBohemianDome() = default;
//----------------------------------------------------------------------------//
void vtkParametricBohemianDome::Evaluate(double uvw[3], double Pt[3], double Duvw[9])
{
// Copy the parameters out of the vector, for the sake of convenience.
double u = uvw[0];
double v = uvw[1];
// We're only going to need the u and v partial derivatives.
// The w partial derivatives are not needed.
double* Du = Duvw;
double* Dv = Duvw + 3;
// Instead of a bunch of calls to the trig library,
// just call it once and store the results.
double cosu = cos(u);
double sinu = sin(u);
double cosv = cos(v);
double sinv = sin(v);
// Location of the point. This parametrization was taken from:
// http://mathworld.wolfram.com/BohemianDome.html
Pt[0] = this->A * cosu;
Pt[1] = this->A * sinu + this->B * cosv;
Pt[2] = this->C * sinv;
// The derivative with respect to u:
Du[0] = -this->A * sinu;
Du[1] = this->A * cosu;
Du[2] = 0.;
// The derivative with respect to v:
Dv[0] = 0.;
Dv[1] = -this->B * sinv;
Dv[2] = this->C * cosv;
}
//----------------------------------------------------------------------------//
double vtkParametricBohemianDome::EvaluateScalar(double*, double*, double*)
{
return 0;
}
//----------------------------------------------------------------------------//
void vtkParametricBohemianDome::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
}
VTK_ABI_NAMESPACE_END
|