1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
|
/*==============================================================================
Program: Visualization Toolkit
Module: ExampleDataArrayRangeAPI.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
==============================================================================*/
// This file provides some examples of how to use the vtkDataArrayRange
// objects: TupleRanges and ValueRanges.
//
// This is not meant to be an exhaustive test of the API's correctness --
// see TestDataArray[Tuple|Value]Range.cxx for those. This is simply a quick
// reference for "what can be done with these range/iterator/reference objects?"
#include "vtkDataArrayRange.h"
#include "vtkFloatArray.h"
#include "vtkNew.h"
#include "vtkSOADataArrayTemplate.h"
#include <iterator> // for std::distance
#include <numeric> // for std::iota
#include <vector>
namespace
{
template <typename ArrayT>
void TestTupleRangeAPI(ArrayT* someArray)
{
// TupleRanges have a two-step hierarchy of iterators and references. The
// first layer encapsulates the concept of tuples, and the second layer
// provides access to the components in a tuple. The following code shows
// how these objects (TupleRange, TupleIterator, TupleReference,
// ComponentIterator, ComponentReference) can be used.
// A TupleRange can be restricted to a subset of the array's data by passing
// explicit start/end values to vtk::DataArrayTupleRange:
{
auto subRange = vtk::DataArrayTupleRange(someArray, 2, 8);
// Iterates over tuples 2-7 (inclusive).
for (auto tupleRef : subRange)
{
std::cout << "Tuple: ";
for (auto compRef : tupleRef)
{
std::cout << compRef << " ";
}
std::cout << "\n";
}
}
// If the exact number of components in a tuple is known at compile-time,
// this can be passed as a template argument to vtk::DataArrayTupleRange.
// This will enable additional compiler optimizations to improve performance.
{
auto optimizedRange = vtk::DataArrayTupleRange<4>(someArray);
// Accessing data in optimizedRange will be more efficient as variables
// like array strides are made available to the compiler.
for (auto tupleRef : optimizedRange)
{
std::cout << "Tuple: ";
for (auto compRef : tupleRef)
{
std::cout << compRef << " ";
}
std::cout << "\n";
}
}
// Both tuple size and subrange information can be used simultaneously:
{
auto optimizedSubRange = vtk::DataArrayTupleRange<4>(someArray, 2, 8);
for (auto tupleRef : optimizedSubRange)
{
std::cout << "Tuple: ";
for (auto compRef : tupleRef)
{
std::cout << compRef << " ";
}
std::cout << "\n";
}
}
// If tuple size is unknown and the range should encompass the full length of
// the array, simply pass in the array with no template arguments:
auto range = vtk::DataArrayTupleRange(someArray);
for (auto tupleRef : range)
{
std::cout << "Tuple: ";
for (auto compRef : tupleRef)
{
std::cout << compRef << " ";
}
std::cout << "\n";
}
// The GetSubRange method can be used to create a new TupleRange that
// spans a portion of the original range:
{
auto fullRange = vtk::DataArrayTupleRange(someArray);
// Arguments are (beginOffset, endOffset)
auto range_2_thru_8 = fullRange.GetSubRange(2, 8);
// Arguments are relative to the current range:
auto range_3_thru_6 = range_2_thru_8.GetSubRange(1, 4);
// If the second arg is omitted, the new range uses the parent's end point:
auto range_4_thru_6 = range_3_thru_6.GetSubRange(1);
// Compiler warnings:
(void)range_4_thru_6;
}
// decltype can be used to deduce the exact type of the TupleRange. The
// TupleRange classes provide additional type aliases that can be used to
// refer to specific types in the iterator/reference hierarchy:
using RangeType = decltype(range);
// These specific type names are available, though just using `auto` is
// sufficient in most cases. The usage of these types is detailed in the
// sections that follow.
// Tuple iterators:
using TupleIteratorType = typename RangeType::TupleIteratorType;
using ConstTupleIteratorType = typename RangeType::ConstTupleIteratorType;
// Tuple references:
using TupleReferenceType = typename RangeType::TupleReferenceType;
using ConstTupleReferenceType = typename RangeType::ConstTupleReferenceType;
// Component iterators:
using ComponentIteratorType = typename RangeType::ComponentIteratorType;
using ConstComponentIteratorType = typename RangeType::ConstComponentIteratorType;
// Component references (ie. `T&` and `const T&`):
using ComponentReferenceType = typename RangeType::ComponentReferenceType;
using ConstComponentReferenceType = typename RangeType::ConstComponentReferenceType;
// Component valuetype (ie. `T`):
using ComponentType = typename RangeType::ComponentType;
/////////////////////////
// TupleRange methods: //
/////////////////////////
range.GetArray(); // Returns someArray
range.GetTupleSize(); // Returns someArray->GetNumberOfComponents()
range.GetBeginTupleId(); // Returns start of tuple range
range.GetEndTupleId(); // Returns end of tuple range.
range.size(); // Returns the number of tuples in the range.
range[4]; // Returns a TupleReference of the range's 5th tuple.
range[4][2]; // Returns the 3rd component of the 5th tuple
// Returns an iterator pointing to the first tuple.
TupleIteratorType iter = range.begin();
// Returns a const iterator at the first tuple.
ConstTupleIteratorType citer = range.cbegin();
// Returns an iterator pointing to the end tuple.
TupleIteratorType end = range.end();
// Returns a const iterator at the end tuple.
ConstTupleIteratorType cend = range.cend();
// For-loop syntax:
for (TupleReferenceType tupleReference : range)
{
(void)tupleReference;
}
for (ConstTupleReferenceType tupleReference : range)
{
(void)tupleReference;
}
// `auto` here will always be either TupleReferenceType or
// ConstTupleReferenceType, depending on whether `range` is const-qualified.
// For component references and value references, `auto`
// should be used with care (see explanations in those sections).
for (auto tupleReference : range)
{
(void)tupleReference;
}
/////////////////////////////////////
// Tuple iterator supported usage: //
/////////////////////////////////////
// Dereference:
// Dereference to obtain the current [Const]TupleReference
TupleReferenceType tuple = *iter;
// ...or a reference to an offset tuple.
ConstTupleReferenceType ctuple = citer[3];
// Traversal:
++iter;
--iter; // prefix increment/decrement behavior
iter++;
iter--; // postfix increment/decrement behavior
iter += 3; // increment
iter = iter - 3; // addition, assignment
// Assignment:
iter = range.begin(); // Iterators can be reassigned.
// can assign const iterators from non-const iterators from same range.
citer = iter;
// Comparison:
if (iter == end)
{
} // All of these work as expected
if (iter != end)
{
}
if (iter < end)
{
}
if (iter <= end)
{
}
if (iter > end)
{
}
if (iter >= end)
{
}
// Math
assert((end - iter) == std::distance(iter, end)); // distance
/////////////////////////////////////
// Tuple reference supported usage //
/////////////////////////////////////
// Obtaining:
TupleReferenceType tuple1 = *iter; // tuple iterator dereference
ConstTupleReferenceType tuple2 = citer[1]; // tuple iterator indexed access
TupleReferenceType tuple3 = range[3]; // range indexed access
// For-loop syntax:
for (ComponentReferenceType component : tuple1)
{
(void)component;
}
for (ConstComponentReferenceType component : tuple1)
{
(void)component;
}
for (ComponentType component : tuple1)
{
(void)component;
}
// Due to limitations of C++, auto should be used with care; depending on
// the implementation of the array, `auto` may have either value or reference
// semantics. The rule of thumb is: only read from auto variables in a
// for-range loop. If writing to them, use RangeType::ComponentReferenceType
// or RangeType::ComponentType explicitly.
for (auto component : range)
{
(void)component;
}
// Assignment:
tuple1 = tuple2; // Component-wise copy of values from tuple2 into tuple1
// Comparison:
assert(tuple1 == tuple2); // Component-wise comparisons of tuple values
assert(tuple1 != tuple3);
// Indexing
tuple3[1] = tuple1[0]; // Access tuple components with []-brackets
// Misc:
tuple3.fill(0); // Sets all components to 0
tuple1.size(); // Returns number of components in tuple.
// Copy to/from pointer:
std::vector<typename decltype(range)::ComponentType> vec(tuple1.size());
tuple2.GetTuple(vec.data()); // Copy values from tuple1 into vec
tuple1.SetTuple(vec.data()); // Copy values from vec into tuple2
// Component iterators
ComponentIteratorType compIter = tuple1.begin();
ComponentIteratorType compEnd = tuple1.end();
ConstComponentIteratorType constCompIter = tuple1.cbegin();
ConstComponentIteratorType constCompEnd = tuple1.cend();
////////////////////////////////////////
// Component iterator supported usage //
////////////////////////////////////////
// Traversal:
++compIter;
--compIter; // prefix increment/decrement behavior
compIter++;
compIter--; // postfix increment/decrement behavior
compIter += 3; // increment
compIter = compIter - 3; // addition, assignment
// Dereference:
// Dereference to get the current [Const]ComponentReference
ComponentReferenceType comp = *compIter;
// ...or a reference to an offset component.
ConstComponentReferenceType constComp = constCompIter[3];
// If a ValueType (instead of a reference) is desired, the ComponentType
// can be used.
ComponentType compVal = comp;
// Assignment:
compIter = tuple1.begin();
// can assign const iterators from non-const iterators from same range.
constCompIter = compIter;
// Comparison:
if (compIter == compEnd)
{
} // All of these work as expected
if (compIter != compEnd)
{
}
if (compIter < compEnd)
{
}
if (compIter <= compEnd)
{
}
if (compIter > compEnd)
{
}
if (compIter >= compEnd)
{
}
// Math
assert((compEnd - compIter) == std::distance(compIter, compEnd)); // distance
// Suppress unused variable warnings:
(void)cend;
(void)constCompEnd;
(void)tuple;
(void)ctuple;
(void)constComp;
(void)compVal;
}
template <typename ArrayT>
void TestValueRangeAPI(ArrayT* someArray)
{
// ValueRanges emulate walking a vtkDataArray object using
// vtkAOSDataArrayTemplate<T>::GetPointer(). That is, ValueRange provides
// a flat iterator that traverses the components of each tuple without any
// explicit representation of the tuple abstraction; when one tuple is
// exhausted, it simply moves to the first component of the next tuple.
//
// ValueRange uses the concept of value indices, named for the GetValue
// method of the common AOS data arrays. A value index describes a location
// as the offset into an AOS array's data buffer. For example, for an array
// with 3-component tuples, a value index of 7 refers to the second component
// of the third tuple:
//
// Array: {X, X, X}, {X, X, X}, {X, X, X}, ...
// TupleIdx: 0 0 0 1 1 1 2 2 2
// CompIdx: 0 1 2 0 1 2 0 1 2
// ValueIdx: 0 1 2 3 4 5 6 7 8
//
// As a result, ValueRange uses fewer objects than TupleRange and is more
// familiar to experienced VTK developers. The ValueRange uses ValueIterators
// and ValueReferences.
// A ValueRange can be restricted to a subset of the array's data by passing
// explicit start/end value indices to vtk::DataArrayValueRange:
{
auto subRange = vtk::DataArrayValueRange(someArray, 3, 19);
// Iterates over values at value indices 3-18 (inclusive).
std::cout << "Values: ";
for (auto value : subRange)
{
std::cout << value << " ";
}
std::cout << "\n";
}
// If the exact number of components in a tuple is known at compile-time,
// this can be passed as a template argument to vtk::DataArrayValueRange.
// While the tuple abstraction is not directly used while working with
// ValueRanges, this will enable additional compiler optimizations in the
// implementation that can improve performance.
{
auto optimizedRange = vtk::DataArrayValueRange<4>(someArray);
// Accessing data in optimizedRange will be more efficient as variables
// like array strides are made available to the compiler.
std::cout << "Values: ";
for (auto value : optimizedRange)
{
std::cout << value << " ";
}
std::cout << "\n";
}
// Both tuple size and subrange information can be used simultaneously:
{
auto optimizedSubRange = vtk::DataArrayValueRange<4>(someArray, 3, 19);
std::cout << "Values: ";
for (auto value : optimizedSubRange)
{
std::cout << value << " ";
}
std::cout << "\n";
}
// If tuple size is unknown and the range should encompass the full length of
// the array, simply pass in the array with no template arguments:
auto range = vtk::DataArrayValueRange(someArray);
std::cout << "Values: ";
for (auto value : range)
{
std::cout << value << " ";
}
std::cout << "\n";
// The GetSubRange method can be used to create a new ValueRange that
// spans a portion of the original range:
{
auto fullRange = vtk::DataArrayValueRange(someArray);
// Arguments are (beginOffset, endOffset)
auto range_2_thru_8 = fullRange.GetSubRange(2, 8);
// Arguments are relative to the current range:
auto range_3_thru_6 = range_2_thru_8.GetSubRange(1, 4);
// If the second arg is omitted, the new range uses the parent's end point:
auto range_4_thru_6 = range_3_thru_6.GetSubRange(1);
// Compiler warnings:
(void)range_4_thru_6;
}
// decltype can be used to deduce the exact type of the ValueRange. The
// ValueRange classes provide additional type aliases that can be used to
// refer to specific types in the iterator/reference hierarchy:
using RangeType = decltype(range);
// These specific type names are available, though just using `auto` is
// sufficient in most cases. The usage of these types is detailed in the
// sections that follow.
// Value iterators:
using IteratorType = typename RangeType::IteratorType;
using ConstIteratorType = typename RangeType::ConstIteratorType;
// Value references (ie. `T&` and `const T&`):
using ReferenceType = typename RangeType::ReferenceType;
using ConstReferenceType = typename RangeType::ConstReferenceType;
// Value type (ie. `T`)
using ValueType = typename RangeType::ValueType;
/////////////////////////
// ValueRange methods: //
/////////////////////////
range.GetArray(); // Returns someArray
range.GetTupleSize(); // Returns someArray->GetNumberOfComponents()
range.GetBeginValueId(); // Returns start of value range
range.GetEndValueId(); // Returns end of value range.
range.size(); // Returns the number of values in the range.
range[4]; // Returns a ValueReference of the range's 5th value.
// Returns an iterator pointing to the first value.
IteratorType iter = range.begin();
// Returns a const iterator at the first value.
ConstIteratorType citer = range.cbegin();
// Returns an iterator pointing to the end value.
IteratorType end = range.end();
// Returns a const iterator at the end value.
ConstIteratorType cend = range.cend();
// For-loop syntax:
for (ReferenceType value : range)
{
(void)value;
}
for (ConstReferenceType value : range)
{
(void)value;
}
for (ValueType value : range)
{
(void)value;
}
// Due to limitations of C++, auto should be used with care; depending on
// the implementation of the array, `auto` may have either value or reference
// semantics. The rule of thumb is: only read from auto variables in a
// for-range loop. If writing to them, use RangeType::ReferenceType or
// RangeType::ValueType explicitly.
for (auto value : range)
{
(void)value;
}
////////////////////////////////////
// Value iterator supported usage //
////////////////////////////////////
// Traversal:
++iter;
--iter; // prefix increment/decrement behavior
citer++;
citer--; // postfix increment/decrement behavior
iter += 3; // increment
iter = iter - 3; // addition, assignment
// Dereference:
// Dereference to get the current [Const]ValueReference
ReferenceType valueRef = *iter;
// ...or a reference to an offset component.
ConstReferenceType constValueRef = citer[3];
// If a ValueType (instead of a reference) is desired, the ValueType alias
// can be used.
ValueType value = valueRef;
// Assignment:
iter = range.begin();
// can assign const iterators from non-const iterators from same range.
citer = iter;
// Comparison:
if (iter == end)
{
} // All of these work as expected
if (iter != end)
{
}
if (iter < end)
{
}
if (iter <= end)
{
}
if (iter > end)
{
}
if (iter >= end)
{
}
// Math
assert((end - iter) == std::distance(iter, end)); // distance
// Suppress unused variable warnings:
(void)cend;
(void)constValueRef;
(void)value;
}
} // end anon namespace
int ExampleDataArrayRangeAPI(int, char*[])
{
vtkNew<vtkFloatArray> aosArray;
aosArray->SetNumberOfComponents(4);
aosArray->SetNumberOfTuples(10);
{ // Fill with data we don't care about:
auto range = vtk::DataArrayValueRange<4>(aosArray);
std::iota(range.begin(), range.end(), 0.f);
}
vtkNew<vtkSOADataArrayTemplate<float>> soaArray;
soaArray->DeepCopy(aosArray);
// Some vtkDataArray pointers to show that these ranges work with the generic
// vtkDataArray API:
vtkDataArray* daAos = aosArray;
vtkDataArray* daSoa = soaArray;
TestTupleRangeAPI(aosArray.Get());
TestTupleRangeAPI(soaArray.Get());
TestTupleRangeAPI(daAos);
TestTupleRangeAPI(daSoa);
TestValueRangeAPI(aosArray.Get());
TestValueRangeAPI(soaArray.Get());
TestValueRangeAPI(daAos);
TestValueRangeAPI(daSoa);
return EXIT_SUCCESS;
}
|