1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
|
/*=========================================================================
Program: Visualization Toolkit
Module: vtkMathPrivate.hxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkMathPrivate
* @brief Internal toolkit used in some vtkMath methods.
*
* vtkMathPrivate provides meta-classes helpers that are used in some vtkMath
* methods.
* @sa
* vtkMath
* vtkMatrixUtilities
*/
#ifndef vtkMathPrivate_hxx
#define vtkMathPrivate_hxx
#include "vtkCommonCoreModule.h" //required for correct implementation
#include "vtkMatrixUtilities.h"
#include <type_traits>
namespace vtkMathPrivate
{
VTK_ABI_NAMESPACE_BEGIN
static constexpr int VTK_MATH_PRIVATE_PACK_SIZE = 4;
//=============================================================================
// This class computes the dot product between row RowT of matrix M1
// and column ColT of matrix M2.
// The template parameter IdxT is on index ahead from computation.
// Template parameters LayoutT1 and LayoutT2 respectively reindex
// input matrices M1 and M2 according to MatrixLayout enumeration
// M1 (or M1^T if LayoutT1 == vtkMatrixUtilities::Layout::Transpose) is a matrix of RowsT x
// MidDimT M2 (or M2^T if LayoutT2 == vtkMatrixUtilities::Layout::Transpose) is a matrix of MidDimT
// x ColsDimT
template <class ScalarT, int RowsT, int MidDimT, int ColsT, int RowT, int ColT,
class LayoutT1 = vtkMatrixUtilities::Layout::Identity,
class LayoutT2 = vtkMatrixUtilities::Layout::Identity, int IdxT = 0, int PackSizeT = MidDimT>
class ContractRowWithCol
{
public:
template <class MatrixT1, class MatrixT2>
static ScalarT Compute(const MatrixT1& M1, const MatrixT2& M2)
{
return ContractRowWithCol<ScalarT, RowsT, MidDimT, ColsT, RowT, ColT, LayoutT1, LayoutT2, IdxT,
Shift>::Compute(M1, M2) +
ContractRowWithCol<ScalarT, RowsT, MidDimT, ColsT, RowT, ColT, LayoutT1, LayoutT2,
IdxT + Shift, PackSizeT - Shift>::Compute(M1, M2);
}
private:
static constexpr bool ROW_OUT_OF_BOUNDS = RowT >= 0 && RowT < RowsT;
static_assert(ROW_OUT_OF_BOUNDS, "RowT is out of bounds");
static constexpr bool COL_OUT_OF_BOUNDS = ColT >= 0 && ColT < ColsT;
static_assert(COL_OUT_OF_BOUNDS, "ColT is out of bounds");
static constexpr int Shift =
(MidDimT - IdxT) / VTK_MATH_PRIVATE_PACK_SIZE ? VTK_MATH_PRIVATE_PACK_SIZE : MidDimT - IdxT - 1;
};
//=============================================================================
// Specialization for when there are 4 components left to compute
template <class ScalarT, int RowsT, int MidDimT, int ColsT, int RowT, int ColT, class LayoutT1,
class LayoutT2, int IdxT>
class ContractRowWithCol<ScalarT, RowsT, MidDimT, ColsT, RowT, ColT, LayoutT1, LayoutT2, IdxT, 4>
{
public:
template <class MatrixT1, class MatrixT2>
static ScalarT Compute(const MatrixT1& M1, const MatrixT2& M2)
{
using Wrap1 = vtkMatrixUtilities::Wrapper<RowsT, MidDimT, MatrixT1, LayoutT1>;
using Wrap2 = vtkMatrixUtilities::Wrapper<MidDimT, ColsT, MatrixT2, LayoutT2>;
return Wrap1::template Get<RowT, IdxT>(M1) * Wrap2::template Get<IdxT, ColT>(M2) +
Wrap1::template Get<RowT, IdxT + 1>(M1) * Wrap2::template Get<IdxT + 1, ColT>(M2) +
Wrap1::template Get<RowT, IdxT + 2>(M1) * Wrap2::template Get<IdxT + 2, ColT>(M2) +
Wrap1::template Get<RowT, IdxT + 3>(M1) * Wrap2::template Get<IdxT + 3, ColT>(M2);
}
private:
static constexpr bool ROW_OUT_OF_BOUNDS = RowT >= 0 && RowT < RowsT;
static_assert(ROW_OUT_OF_BOUNDS, "RowT is out of bounds");
static constexpr bool COL_OUT_OF_BOUNDS = ColT >= 0 && ColT < ColsT;
static_assert(COL_OUT_OF_BOUNDS, "ColT is out of bounds");
};
//=============================================================================
// Specialization for when there are 3 components left to compute
template <class ScalarT, int RowsT, int MidDimT, int ColsT, int RowT, int ColT, class LayoutT1,
class LayoutT2, int IdxT>
class ContractRowWithCol<ScalarT, RowsT, MidDimT, ColsT, RowT, ColT, LayoutT1, LayoutT2, IdxT, 3>
{
public:
template <class MatrixT1, class MatrixT2>
static ScalarT Compute(const MatrixT1& M1, const MatrixT2& M2)
{
using Wrap1 = vtkMatrixUtilities::Wrapper<RowsT, MidDimT, MatrixT1, LayoutT1>;
using Wrap2 = vtkMatrixUtilities::Wrapper<MidDimT, ColsT, MatrixT2, LayoutT2>;
return Wrap1::template Get<RowT, IdxT>(M1) * Wrap2::template Get<IdxT, ColT>(M2) +
Wrap1::template Get<RowT, IdxT + 1>(M1) * Wrap2::template Get<IdxT + 1, ColT>(M2) +
Wrap1::template Get<RowT, IdxT + 2>(M1) * Wrap2::template Get<IdxT + 2, ColT>(M2);
}
private:
static constexpr bool ROW_OUT_OF_BOUNDS = RowT >= 0 && RowT < RowsT;
static_assert(ROW_OUT_OF_BOUNDS, "RowT is out of bounds");
static constexpr bool COL_OUT_OF_BOUNDS = ColT >= 0 && ColT < ColsT;
static_assert(COL_OUT_OF_BOUNDS, "ColT is out of bounds");
};
//=============================================================================
// Specialization for when there are 2 components left to compute
template <class ScalarT, int RowsT, int MidDimT, int ColsT, int RowT, int ColT, class LayoutT1,
class LayoutT2, int IdxT>
class ContractRowWithCol<ScalarT, RowsT, MidDimT, ColsT, RowT, ColT, LayoutT1, LayoutT2, IdxT, 2>
{
public:
template <class MatrixT1, class MatrixT2>
static ScalarT Compute(const MatrixT1& M1, const MatrixT2& M2)
{
using Wrap1 = vtkMatrixUtilities::Wrapper<RowsT, MidDimT, MatrixT1, LayoutT1>;
using Wrap2 = vtkMatrixUtilities::Wrapper<MidDimT, ColsT, MatrixT2, LayoutT2>;
return Wrap1::template Get<RowT, IdxT>(M1) * Wrap2::template Get<IdxT, ColT>(M2) +
Wrap1::template Get<RowT, IdxT + 1>(M1) * Wrap2::template Get<IdxT + 1, ColT>(M2);
}
private:
static constexpr bool ROW_OUT_OF_BOUNDS = RowT >= 0 && RowT < RowsT;
static_assert(ROW_OUT_OF_BOUNDS, "RowT is out of bounds");
static constexpr bool COL_OUT_OF_BOUNDS = ColT >= 0 && ColT < ColsT;
static_assert(COL_OUT_OF_BOUNDS, "ColT is out of bounds");
};
//=============================================================================
// Specialization for when there is 1 component left to compute
template <class ScalarT, int RowsT, int MidDimT, int ColsT, int RowT, int ColT, class LayoutT1,
class LayoutT2, int IdxT>
class ContractRowWithCol<ScalarT, RowsT, MidDimT, ColsT, RowT, ColT, LayoutT1, LayoutT2, IdxT, 1>
{
public:
template <class MatrixT1, class MatrixT2>
static ScalarT Compute(const MatrixT1& M1, const MatrixT2& M2)
{
using Wrap1 = vtkMatrixUtilities::Wrapper<RowsT, MidDimT, MatrixT1, LayoutT1>;
using Wrap2 = vtkMatrixUtilities::Wrapper<MidDimT, ColsT, MatrixT2, LayoutT2>;
return Wrap1::template Get<RowT, IdxT>(M1) * Wrap2::template Get<IdxT, ColT>(M2);
}
private:
static constexpr bool ROW_OUT_OF_BOUNDS = RowT >= 0 && RowT < RowsT;
static_assert(ROW_OUT_OF_BOUNDS, "RowT is out of bounds");
static constexpr bool COL_OUT_OF_BOUNDS = ColT >= 0 && ColT < ColsT;
static_assert(COL_OUT_OF_BOUNDS, "ColT is out of bounds");
};
//=============================================================================
// This class handles row and col contraction when at least one of the 2 input
// matrices are diagonal
template <class ScalarT, int RowsT, int MidDimT, int ColsT, int RowT, int ColT, class LayoutT1,
class LayoutT2>
class DiagContractRowWithCol;
//=============================================================================
// Specialization for when M1 is diagonal
template <class ScalarT, int RowsT, int MidDimT, int ColsT, int RowT, int ColT, class LayoutT2>
class DiagContractRowWithCol<ScalarT, RowsT, MidDimT, ColsT, RowT, ColT,
vtkMatrixUtilities::Layout::Diag, LayoutT2>
{
public:
template <class MatrixT1, class MatrixT2>
static ScalarT Compute(const MatrixT1& M1, const MatrixT2& M2)
{
return M1[RowT] * M2[Mapper2::template GetIndex<RowT, ColT>()];
}
private:
static constexpr bool ROW_OUT_OF_BOUNDS = RowT >= 0 && RowT < RowsT;
static_assert(ROW_OUT_OF_BOUNDS, "RowT is out of bounds");
static constexpr bool COL_OUT_OF_BOUNDS = ColT >= 0 && ColT < ColsT;
static_assert(COL_OUT_OF_BOUNDS, "ColT is out of bounds");
using Mapper2 = vtkMatrixUtilities::Mapper<MidDimT, ColsT, LayoutT2>;
};
//=============================================================================
// Specialization for when M2 is diagonal
template <class ScalarT, int RowsT, int MidDimT, int ColsT, int RowT, int ColT, class LayoutT1>
class DiagContractRowWithCol<ScalarT, RowsT, MidDimT, ColsT, RowT, ColT, LayoutT1,
vtkMatrixUtilities::Layout::Diag>
{
public:
template <class MatrixT1, class MatrixT2>
static ScalarT Compute(const MatrixT1& M1, const MatrixT2& M2)
{
return M1[Mapper1::template GetIndex<RowT, ColT>()] * M2[ColT];
}
private:
static constexpr bool ROW_OUT_OF_BOUNDS = RowT >= 0 && RowT < RowsT;
static_assert(ROW_OUT_OF_BOUNDS, "RowT is out of bounds");
static constexpr bool COL_OUT_OF_BOUNDS = ColT >= 0 && ColT < ColsT;
static_assert(COL_OUT_OF_BOUNDS, "ColT is out of bounds");
using Mapper1 = vtkMatrixUtilities::Mapper<RowsT, MidDimT, LayoutT1>;
};
//=============================================================================
// This class returns zero. It is used for rectangular diagonal matrices, when
// lines / rows are filled with zeros.
template <class ScalarT>
class NullContractRowWithCol
{
public:
template <class MatrixT1, class MatrixT2>
static ScalarT Compute(const MatrixT1&, const MatrixT2&)
{
return ScalarT(0);
}
};
//=============================================================================
// Helper class to choose between regular contraction class vs diagonal
// handling contraction class.
// By default, Type is an instance of ContractRowWithCol
template <class ScalarT, int RowsT, int MidDimT, int ColsT, int RowT, int ColT, class LayoutT1,
class LayoutT2, bool HasOneDiagonalMatrixT = false>
struct ContractRowWithColSwitch
{
typedef ContractRowWithCol<ScalarT, RowsT, MidDimT, ColsT, RowT, ColT, LayoutT1, LayoutT2> Type;
static constexpr bool NO_INPUT_MATRIX_CAN_BE_DIAGONAL =
!std::is_same<LayoutT1, vtkMatrixUtilities::Layout::Diag>::value &&
!std::is_same<LayoutT2, vtkMatrixUtilities::Layout::Diag>::value;
static_assert(NO_INPUT_MATRIX_CAN_BE_DIAGONAL,
"LayoutT1 and LayoutT2 cannot equal vtkMatrixUtilities::Layout::Diag in this setup");
};
//=============================================================================
// Specialization for diagonal matrices.
// Rectangular diagonal matrices are handled using NullContractRowWithCol.
template <class ScalarT, int RowsT, int MidDimT, int ColsT, int RowT, int ColT, class LayoutT1,
class LayoutT2>
struct ContractRowWithColSwitch<ScalarT, RowsT, MidDimT, ColsT, RowT, ColT, LayoutT1, LayoutT2,
true>
{
static constexpr bool IsDiagonal1 =
std::is_same<LayoutT1, vtkMatrixUtilities::Layout::Diag>::value;
static constexpr bool IsDiagonal2 =
std::is_same<LayoutT2, vtkMatrixUtilities::Layout::Diag>::value;
// If on of the diagonal matrix is rectangular and we are out of the diagonal
// length, all remaining values are null.
static constexpr bool UseNullContractRowWithCol =
(IsDiagonal1 && RowT >= MidDimT) || (IsDiagonal2 && ColT >= MidDimT);
typedef typename std::conditional<UseNullContractRowWithCol, NullContractRowWithCol<ScalarT>,
DiagContractRowWithCol<ScalarT, RowsT, MidDimT, ColsT, RowT, ColT, LayoutT1, LayoutT2>>::type
Type;
static constexpr bool NEEDS_AT_LEAST_ONE_DIAGONAL_INPUT_MATRIX = IsDiagonal1 || IsDiagonal2;
static_assert(NEEDS_AT_LEAST_ONE_DIAGONAL_INPUT_MATRIX,
"LayoutT1 or LayoutT2 must equal vtkMatrixUtilities::Layout::Diag in this setup");
};
namespace detail
{
//=============================================================================
// Class in charge for actually multiplying 2 matrices.
// This method is called by MultiplyMatrix::Compute for chunks of size
// VTK_MATH_PRIVATE_PACK_SIZE at most, specified in ColPackSizeT.
// This class mostly consists on explicitly onfold computation for those chunks.
template <int RowsT, int MidDimT, int ColsT, class LayoutT1, class LayoutT2, int RowT, int ColT,
int ColPackSizeT>
class MultiplyMatrix;
//=============================================================================
// Specialization for a chunk of size 4
template <int RowsT, int MidDimT, int ColsT, class LayoutT1, class LayoutT2, int RowT, int ColT>
class MultiplyMatrix<RowsT, MidDimT, ColsT, LayoutT1, LayoutT2, RowT, ColT, 4>
{
public:
template <class MatrixT1, class MatrixT2, class MatrixT3>
static void Compute(const MatrixT1& M1, const MatrixT2& M2, MatrixT3& M3)
{
using Scalar = typename vtkMatrixUtilities::ScalarTypeExtractor<MatrixT3>::value_type;
using Wrap3 = vtkMatrixUtilities::Wrapper<RowsT, ColsT, MatrixT3>;
Wrap3::template Get<RowT, ColT>(M3) = ContractRowWithColSwitch<Scalar, RowsT, MidDimT, ColsT,
RowT, ColT, LayoutT1, LayoutT2, OneMatrixIsDiagonal>::Type::Compute(M1, M2);
Wrap3::template Get<RowT, ColT + 1>(M3) = ContractRowWithColSwitch<Scalar, RowsT, MidDimT,
ColsT, RowT, ColT + 1, LayoutT1, LayoutT2, OneMatrixIsDiagonal>::Type::Compute(M1, M2);
Wrap3::template Get<RowT, ColT + 2>(M3) = ContractRowWithColSwitch<Scalar, RowsT, MidDimT,
ColsT, RowT, ColT + 2, LayoutT1, LayoutT2, OneMatrixIsDiagonal>::Type::Compute(M1, M2);
Wrap3::template Get<RowT, ColT + 3>(M3) = ContractRowWithColSwitch<Scalar, RowsT, MidDimT,
ColsT, RowT, ColT + 3, LayoutT1, LayoutT2, OneMatrixIsDiagonal>::Type::Compute(M1, M2);
}
private:
static constexpr bool ROW_OUT_OF_BOUNDS = RowT < RowsT && RowT >= 0;
static_assert(ROW_OUT_OF_BOUNDS, "RowT is out of bounds");
static constexpr bool COL_OUT_OF_BOUNDS = ColT + 3 < ColsT && ColT >= 0;
static_assert(COL_OUT_OF_BOUNDS, "ColT is out of bounds");
static constexpr bool OneMatrixIsDiagonal =
std::is_same<LayoutT1, vtkMatrixUtilities::Layout::Diag>::value ||
std::is_same<LayoutT2, vtkMatrixUtilities::Layout::Diag>::value;
};
//=============================================================================
// Specialization for a chunk of size 3
template <int RowsT, int MidDimT, int ColsT, class LayoutT1, class LayoutT2, int RowT, int ColT>
class MultiplyMatrix<RowsT, MidDimT, ColsT, LayoutT1, LayoutT2, RowT, ColT, 3>
{
public:
template <class MatrixT1, class MatrixT2, class MatrixT3>
static void Compute(const MatrixT1& M1, const MatrixT2& M2, MatrixT3& M3)
{
using Scalar = typename vtkMatrixUtilities::ScalarTypeExtractor<MatrixT3>::value_type;
using Wrap3 = vtkMatrixUtilities::Wrapper<RowsT, ColsT, MatrixT3>;
Wrap3::template Get<RowT, ColT>(M3) = ContractRowWithColSwitch<Scalar, RowsT, MidDimT, ColsT,
RowT, ColT, LayoutT1, LayoutT2, OneMatrixIsDiagonal>::Type::Compute(M1, M2);
Wrap3::template Get<RowT, ColT + 1>(M3) = ContractRowWithColSwitch<Scalar, RowsT, MidDimT,
ColsT, RowT, ColT + 1, LayoutT1, LayoutT2, OneMatrixIsDiagonal>::Type::Compute(M1, M2);
Wrap3::template Get<RowT, ColT + 2>(M3) = ContractRowWithColSwitch<Scalar, RowsT, MidDimT,
ColsT, RowT, ColT + 2, LayoutT1, LayoutT2, OneMatrixIsDiagonal>::Type::Compute(M1, M2);
}
private:
static constexpr bool ROW_OUT_OF_BOUNDS = RowT < RowsT && RowT >= 0;
static_assert(ROW_OUT_OF_BOUNDS, "RowT is out of bounds");
static constexpr bool COL_OUT_OF_BOUNDS = ColT + 2 < ColsT && ColT >= 0;
static_assert(COL_OUT_OF_BOUNDS, "ColT is out of bounds");
static constexpr bool OneMatrixIsDiagonal =
std::is_same<LayoutT1, vtkMatrixUtilities::Layout::Diag>::value ||
std::is_same<LayoutT2, vtkMatrixUtilities::Layout::Diag>::value;
};
//=============================================================================
// Specialization for a chunk of size 2
template <int RowsT, int MidDimT, int ColsT, class LayoutT1, class LayoutT2, int RowT, int ColT>
class MultiplyMatrix<RowsT, MidDimT, ColsT, LayoutT1, LayoutT2, RowT, ColT, 2>
{
public:
template <class MatrixT1, class MatrixT2, class MatrixT3>
static void Compute(const MatrixT1& M1, const MatrixT2& M2, MatrixT3& M3)
{
using Scalar = typename vtkMatrixUtilities::ScalarTypeExtractor<MatrixT3>::value_type;
using Wrap3 = vtkMatrixUtilities::Wrapper<RowsT, ColsT, MatrixT3>;
Wrap3::template Get<RowT, ColT>(M3) = ContractRowWithColSwitch<Scalar, RowsT, MidDimT, ColsT,
RowT, ColT, LayoutT1, LayoutT2, OneMatrixIsDiagonal>::Type::Compute(M1, M2);
Wrap3::template Get<RowT, ColT + 1>(M3) = ContractRowWithColSwitch<Scalar, RowsT, MidDimT,
ColsT, RowT, ColT + 1, LayoutT1, LayoutT2, OneMatrixIsDiagonal>::Type::Compute(M1, M2);
}
private:
static constexpr bool ROW_OUT_OF_BOUNDS = RowT < RowsT && RowT >= 0;
static_assert(ROW_OUT_OF_BOUNDS, "RowT is out of bounds");
static constexpr bool COL_OUT_OF_BOUNDS = ColT + 1 < ColsT && ColT >= 0;
static_assert(COL_OUT_OF_BOUNDS, "ColT is out of bounds");
static constexpr bool OneMatrixIsDiagonal =
std::is_same<LayoutT1, vtkMatrixUtilities::Layout::Diag>::value ||
std::is_same<LayoutT2, vtkMatrixUtilities::Layout::Diag>::value;
};
//=============================================================================
// Specialization for a chunk of size 1
template <int RowsT, int MidDimT, int ColsT, class LayoutT1, class LayoutT2, int RowT, int ColT>
class MultiplyMatrix<RowsT, MidDimT, ColsT, LayoutT1, LayoutT2, RowT, ColT, 1>
{
public:
template <class MatrixT1, class MatrixT2, class MatrixT3>
static void Compute(const MatrixT1& M1, const MatrixT2& M2, MatrixT3& M3)
{
using Scalar = typename vtkMatrixUtilities::ScalarTypeExtractor<MatrixT3>::value_type;
using Wrap3 = vtkMatrixUtilities::Wrapper<RowsT, ColsT, MatrixT3>;
Wrap3::template Get<RowT, ColT>(M3) = ContractRowWithColSwitch<Scalar, RowsT, MidDimT, ColsT,
RowT, ColT, LayoutT1, LayoutT2, OneMatrixIsDiagonal>::Type::Compute(M1, M2);
}
private:
static constexpr bool ROW_OUT_OF_BOUNDS = RowT < RowsT && RowT >= 0;
static_assert(ROW_OUT_OF_BOUNDS, "RowT is out of bounds");
static constexpr bool COL_OUT_OF_BOUNDS = ColT < ColsT && ColT >= 0;
static_assert(COL_OUT_OF_BOUNDS, "ColT is out of bounds");
static constexpr bool OneMatrixIsDiagonal =
std::is_same<LayoutT1, vtkMatrixUtilities::Layout::Diag>::value ||
std::is_same<LayoutT2, vtkMatrixUtilities::Layout::Diag>::value;
};
//=============================================================================
// Specialization when both input matrices are diagonal for a chunk of size 4
template <int SizeT, int IdxT>
class MultiplyMatrix<SizeT, SizeT, SizeT, vtkMatrixUtilities::Layout::Diag,
vtkMatrixUtilities::Layout::Diag, IdxT, IdxT, 4>
{
public:
template <class MatrixT1, class MatrixT2, class MatrixT3>
static void Compute(const MatrixT1& M1, const MatrixT2& M2, MatrixT3& M3)
{
M3[IdxT] = M1[IdxT] * M2[IdxT];
M3[IdxT + 1] = M1[IdxT + 1] * M2[IdxT + 1];
M3[IdxT + 2] = M1[IdxT + 2] * M2[IdxT + 2];
M3[IdxT + 3] = M1[IdxT + 3] * M2[IdxT + 3];
}
};
//=============================================================================
// Specialization when both input matrices are diagonal for a chunk of size 3
template <int SizeT, int IdxT>
class MultiplyMatrix<SizeT, SizeT, SizeT, vtkMatrixUtilities::Layout::Diag,
vtkMatrixUtilities::Layout::Diag, IdxT, IdxT, 3>
{
public:
template <class MatrixT1, class MatrixT2, class MatrixT3>
static void Compute(const MatrixT1& M1, const MatrixT2& M2, MatrixT3& M3)
{
M3[IdxT] = M1[IdxT] * M2[IdxT];
M3[IdxT + 1] = M1[IdxT + 1] * M2[IdxT + 1];
M3[IdxT + 2] = M1[IdxT + 2] * M2[IdxT + 2];
}
};
//=============================================================================
// Specialization when both input matrices are diagonal for a chunk of size 2
template <int SizeT, int IdxT>
class MultiplyMatrix<SizeT, SizeT, SizeT, vtkMatrixUtilities::Layout::Diag,
vtkMatrixUtilities::Layout::Diag, IdxT, IdxT, 2>
{
public:
template <class MatrixT1, class MatrixT2, class MatrixT3>
static void Compute(const MatrixT1& M1, const MatrixT2& M2, MatrixT3& M3)
{
M3[IdxT] = M1[IdxT] * M2[IdxT];
M3[IdxT + 1] = M1[IdxT + 1] * M2[IdxT + 1];
}
};
//=============================================================================
// Specialization when both input matrices are diagonal for a chunk of size 1
template <int SizeT, int IdxT>
class MultiplyMatrix<SizeT, SizeT, SizeT, vtkMatrixUtilities::Layout::Diag,
vtkMatrixUtilities::Layout::Diag, IdxT, IdxT, 1>
{
public:
template <class MatrixT1, class MatrixT2, class MatrixT3>
static void Compute(const MatrixT1& M1, const MatrixT2& M2, MatrixT3& M3)
{
M3[IdxT] = M1[IdxT] * M2[IdxT];
}
};
} // namespace detail
//=============================================================================
// Multiply matrices such that M3 = M1 * M2.
// Template parameters LayoutT1 and LayoutT2 respectively reindex
// input matrices M1 and M2 following MatrixLayout options
// Hence, if LayoutT1 == vtkMatrixUtilities::Layout::Transpose, then M3 = M1^T * M2, and so on.
// M1 (or M1^T if LayoutT1 == vtkMatrixUtilities::Layout::Transpose) is a matrix of RowsT x
// MidDimT M2 (or M2^T if LayoutT2 == vtkMatrixUtilities::Layout::Transpose) is a matrix of MidDimT
// x ColsDimT
//
// RemainingRowSizeT should be disregarded when first instantiating this class. It is
// the number of remaining elements in the current row to process.
//
// To compute the multiplication, each component of the output matrix
// is computed chunk by chunk (of size VTK_MATH_PRIVATE_PACK_SIZE),
// starting at the top left, sweeping the rows one by one.
template <int RowsT, int MidDimT, int ColsT, class LayoutT1 = vtkMatrixUtilities::Layout::Identity,
class LayoutT2 = vtkMatrixUtilities::Layout::Identity, int NextRowT = 1, int NextColT = 1,
int RemainingRowSizeT = ColsT>
class MultiplyMatrix
{
public:
template <class MatrixT1, class MatrixT2, class MatrixT3>
static void Compute(const MatrixT1& M1, const MatrixT2& M2, MatrixT3& M3)
{
detail::MultiplyMatrix<RowsT, MidDimT, ColsT, LayoutT1, LayoutT2, Row, Col, Shift>::Compute(
M1, M2, M3);
MultiplyMatrix<RowsT, MidDimT, ColsT, LayoutT1, LayoutT2, ForwardRow, ForwardCol,
ForwardRemainingRowSize>::Compute(M1, M2, M3);
}
private:
static constexpr int Row = NextRowT - 1;
static constexpr int Col = NextColT - 1;
// We go to a new row when the last chunk is lower or equal to
// VTK_MATH_PRIVATE_PACK_SIZE
static constexpr bool GoToNewRow = !((ColsT - Col - 1) / VTK_MATH_PRIVATE_PACK_SIZE);
// This is the chunk size, which is from what we should shift in recursive
// calls
static constexpr int Shift = GoToNewRow ? ColsT - Col : VTK_MATH_PRIVATE_PACK_SIZE;
// Row / col / pack size for the next recursive call, depending on if we
// change row or not.
static constexpr int ForwardRow = GoToNewRow ? NextRowT + 1 : NextRowT;
static constexpr int ForwardCol = GoToNewRow ? 1 : NextColT + Shift;
static constexpr int ForwardRemainingRowSize = GoToNewRow ? ColsT : RemainingRowSizeT - Shift;
static constexpr bool ROW_OUT_OF_BOUNDS = Row < RowsT && Row >= 0;
static_assert(ROW_OUT_OF_BOUNDS, "RowT is out of bounds");
static constexpr bool COL_OUT_OF_BOUNDS = Col < ColsT && Col >= 0;
static_assert(COL_OUT_OF_BOUNDS, "ColT is out of bounds");
};
//=============================================================================
// Specialization for when both input matrices are diagonal
// Warning: RowsT, MidDimT and ColsT MUST match
template <int RowsT, int MidDimT, int ColsT, int NextIdxT, int RemainingRowSizeT>
class MultiplyMatrix<RowsT, MidDimT, ColsT, vtkMatrixUtilities::Layout::Diag,
vtkMatrixUtilities::Layout::Diag, NextIdxT, NextIdxT, RemainingRowSizeT>
{
public:
template <class MatrixT1, class MatrixT2, class MatrixT3>
static void Compute(const MatrixT1& M1, const MatrixT2& M2, MatrixT3& M3)
{
detail::MultiplyMatrix<RowsT, MidDimT, ColsT, vtkMatrixUtilities::Layout::Diag,
vtkMatrixUtilities::Layout::Diag, NextIdxT - 1, NextIdxT - 1, Shift>::Compute(M1, M2, M3);
MultiplyMatrix<RowsT, MidDimT, ColsT, vtkMatrixUtilities::Layout::Diag,
vtkMatrixUtilities::Layout::Diag, NextIdxT + Shift, NextIdxT + Shift,
RemainingRowSizeT - Shift>::Compute(M1, M2, M3);
}
private:
static constexpr bool Shift = VTK_MATH_PRIVATE_PACK_SIZE;
static constexpr bool DIAGONAL_MATRICES_DIMENSIONS_DONT_MATCH =
RowsT == MidDimT && RowsT == ColsT;
static_assert(DIAGONAL_MATRICES_DIMENSIONS_DONT_MATCH, "There must be RowsT = MidDimT = colsT");
static constexpr bool ROW_OUT_OF_BOUNDS = NextIdxT <= RowsT && NextIdxT > 0;
static_assert(ROW_OUT_OF_BOUNDS, "RowT is out of bounds");
static constexpr bool COL_OUT_OF_BOUNDS = NextIdxT <= ColsT && NextIdxT > 0;
static_assert(COL_OUT_OF_BOUNDS, "ColT is out of bounds");
};
//=============================================================================
// Macro defining the specialization for when both input matrices are diagonal,
// implementing the last chunk to compute. They should be specialized
// for integers below VTK_MATH_PRIVATE_PACK_SIZE
#define vtkEndForBothDiagonalMultiplyMatrixSpecializationMacro(RemainingRowSize) \
template <int RowsT, int MidDimT, int ColsT, int NextIdxT> \
class MultiplyMatrix<RowsT, MidDimT, ColsT, vtkMatrixUtilities::Layout::Diag, \
vtkMatrixUtilities::Layout::Diag, NextIdxT, NextIdxT, RemainingRowSize> \
{ \
public: \
template <class MatrixT1, class MatrixT2, class MatrixT3> \
static void Compute(const MatrixT1& M1, const MatrixT2& M2, MatrixT3& M3) \
{ \
detail::MultiplyMatrix<RowsT, MidDimT, ColsT, vtkMatrixUtilities::Layout::Diag, \
vtkMatrixUtilities::Layout::Diag, NextIdxT - 1, NextIdxT - 1, \
RemainingRowSize>::Compute(M1, M2, M3); \
} \
\
private: \
static constexpr bool DIAGONAL_MATRICES_DIMENSIONS_DONT_MATCH = \
RowsT == MidDimT && RowsT == ColsT; \
static_assert( \
DIAGONAL_MATRICES_DIMENSIONS_DONT_MATCH, "There must be RowsT = MidDimT = colsT"); \
static constexpr bool ROW_OUT_OF_BOUNDS = NextIdxT <= RowsT && NextIdxT > 0; \
static_assert(ROW_OUT_OF_BOUNDS, "RowT is out of bounds"); \
static constexpr bool COL_OUT_OF_BOUNDS = NextIdxT <= ColsT && NextIdxT > 0; \
static_assert(COL_OUT_OF_BOUNDS, "ColT is out of bounds"); \
};
//=============================================================================
vtkEndForBothDiagonalMultiplyMatrixSpecializationMacro(1);
vtkEndForBothDiagonalMultiplyMatrixSpecializationMacro(2);
vtkEndForBothDiagonalMultiplyMatrixSpecializationMacro(3);
vtkEndForBothDiagonalMultiplyMatrixSpecializationMacro(4);
#undef vtkEndForBothDiagonalMultiplyMatrixSpecializationMacro
//=============================================================================
// Macro defining specialization for the last chunk to compute. They should be
// specialized for integers below VTK_MATH_PRIVATE_PACK_SIZE
#define vtkLastRowMultiplyMatrixSpecializationMacro(RemainingRowSize) \
template <int RowsT, int MidDimT, int ColsT, class LayoutT1, class LayoutT2, int NextColT> \
class MultiplyMatrix<RowsT, MidDimT, ColsT, LayoutT1, LayoutT2, RowsT, NextColT, \
RemainingRowSize> \
{ \
public: \
template <class MatrixT1, class MatrixT2, class MatrixT3> \
static void Compute(const MatrixT1& M1, const MatrixT2& M2, MatrixT3& M3) \
{ \
detail::MultiplyMatrix<RowsT, MidDimT, ColsT, LayoutT1, LayoutT2, RowsT - 1, NextColT - 1, \
RemainingRowSize>::Compute(M1, M2, M3); \
} \
\
private: \
static constexpr bool COL_OUT_OF_BOUNDS = NextColT - 1 < ColsT && NextColT >= 1; \
static_assert(COL_OUT_OF_BOUNDS, "ColT is out of bounds"); \
};
//=============================================================================
vtkLastRowMultiplyMatrixSpecializationMacro(1);
vtkLastRowMultiplyMatrixSpecializationMacro(2);
vtkLastRowMultiplyMatrixSpecializationMacro(3);
vtkLastRowMultiplyMatrixSpecializationMacro(4);
#undef vtkLastRowMultiplyMatrixSpecializationMacro
//=============================================================================
// Class computing the determinant of square matrices SizeT x SizeT.
// The template parameter LayoutT is a struct embedded in MatrixLayout
template <int SizeT, class LayoutT = vtkMatrixUtilities::Layout::Identity>
class Determinant;
//=============================================================================
// Specialization for diagonal 3x3 matrices of size
template <>
class Determinant<3, vtkMatrixUtilities::Layout::Diag>
{
public:
template <class MatrixT>
static typename vtkMatrixUtilities::ScalarTypeExtractor<MatrixT>::value_type Compute(
const MatrixT& M)
{
return M[0] * M[1] * M[3];
}
};
//=============================================================================
// Specialization for diagonal 2x2 matrices
template <>
class Determinant<2, vtkMatrixUtilities::Layout::Diag>
{
public:
template <class MatrixT>
static typename vtkMatrixUtilities::ScalarTypeExtractor<MatrixT>::value_type Compute(
const MatrixT& M)
{
return M[0] * M[1];
}
};
//=============================================================================
// Specialization for 1x1 matrices
template <class LayoutT>
class Determinant<1, LayoutT>
{
public:
template <class MatrixT>
static typename vtkMatrixUtilities::ScalarTypeExtractor<MatrixT>::value_type Compute(
const MatrixT& M)
{
return M[0];
}
};
//=============================================================================
// Specialization for 2x2 non-diagonal matrices
template <class LayoutT>
class Determinant<2, LayoutT>
{
public:
template <class MatrixT>
static typename vtkMatrixUtilities::ScalarTypeExtractor<MatrixT>::value_type Compute(
const MatrixT& M)
{
using Wrap = vtkMatrixUtilities::Wrapper<2, 2, MatrixT, LayoutT>;
return Wrap::template Get<0, 0>(M) * Wrap::template Get<1, 1>(M) -
Wrap::template Get<1, 0>(M) * Wrap::template Get<0, 1>(M);
}
private:
};
//=============================================================================
// Specialization for 3x3 non-diagonal matrices
template <class LayoutT>
class Determinant<3, LayoutT>
{
public:
template <class MatrixT>
static typename vtkMatrixUtilities::ScalarTypeExtractor<MatrixT>::value_type Compute(
const MatrixT& M)
{
using Wrap = vtkMatrixUtilities::Wrapper<3, 3, MatrixT, LayoutT>;
return Wrap::template Get<0, 0>(M) * Wrap::template Get<1, 1>(M) * Wrap::template Get<2, 2>(M) +
Wrap::template Get<0, 1>(M) * Wrap::template Get<1, 2>(M) * Wrap::template Get<2, 0>(M) +
Wrap::template Get<0, 2>(M) * Wrap::template Get<1, 0>(M) * Wrap::template Get<2, 1>(M) -
Wrap::template Get<0, 0>(M) * Wrap::template Get<1, 2>(M) * Wrap::template Get<2, 1>(M) -
Wrap::template Get<0, 1>(M) * Wrap::template Get<1, 0>(M) * Wrap::template Get<2, 2>(M) -
Wrap::template Get<0, 2>(M) * Wrap::template Get<1, 1>(M) * Wrap::template Get<2, 0>(M);
}
};
//=============================================================================
// Class inverting square matrices SizeT x SizeT.
// The template parameter LayoutT is a struct embedded in MatrixLayout
template <int SizeT, class LayoutT = vtkMatrixUtilities::Layout::Identity>
class InvertMatrix;
//=============================================================================
// Specialization for 2x2 non-diagonal matrices
template <class LayoutT>
class InvertMatrix<2, LayoutT>
{
public:
template <class MatrixT1, class MatrixT2>
static void Compute(const MatrixT1& M1, MatrixT2& M2)
{
using Scalar = typename vtkMatrixUtilities::ScalarTypeExtractor<MatrixT2>::value_type;
using Wrap1 = vtkMatrixUtilities::Wrapper<2, 2, MatrixT1, LayoutT>;
using Wrap2 = vtkMatrixUtilities::Wrapper<2, 2, MatrixT2>;
Scalar detInv = 1.0 / Determinant<2, LayoutT>::Compute(M1);
Wrap2::template Get<0, 0>(M2) = detInv * Wrap1::template Get<1, 1>(M1);
Wrap2::template Get<1, 0>(M2) = -detInv * Wrap1::template Get<1, 0>(M1);
Wrap2::template Get<0, 1>(M2) = -detInv * Wrap1::template Get<0, 1>(M1);
Wrap2::template Get<1, 1>(M2) = detInv * Wrap1::template Get<0, 0>(M1);
}
};
//=============================================================================
// Specialization for 3x3 non-diagonal matrices
template <class LayoutT>
class InvertMatrix<3, LayoutT>
{
public:
template <class MatrixT1, class MatrixT2>
static void Compute(const MatrixT1& M1, MatrixT2& M2)
{
using Scalar = typename vtkMatrixUtilities::ScalarTypeExtractor<MatrixT2>::value_type;
using Wrap1 = vtkMatrixUtilities::Wrapper<3, 3, MatrixT1, LayoutT>;
using Wrap2 = vtkMatrixUtilities::Wrapper<3, 3, MatrixT2>;
Scalar detInv = 1.0 /
(Wrap1::template Get<0, 0>(M1) *
(Wrap1::template Get<1, 1>(M1) * Wrap1::template Get<2, 2>(M1) -
Wrap1::template Get<2, 1>(M1) * Wrap1::template Get<1, 2>(M1)) -
Wrap1::template Get<0, 1>(M1) *
(Wrap1::template Get<1, 0>(M1) * Wrap1::template Get<2, 2>(M1) -
Wrap1::template Get<2, 0>(M1) * Wrap1::template Get<1, 2>(M1)) +
Wrap1::template Get<0, 2>(M1) *
(Wrap1::template Get<1, 0>(M1) * Wrap1::template Get<2, 1>(M1) -
Wrap1::template Get<2, 0>(M1) * Wrap1::template Get<1, 1>(M1)));
Wrap2::template Get<0, 0>(M2) = detInv *
(Wrap1::template Get<1, 1>(M1) * Wrap1::template Get<2, 2>(M1) -
Wrap1::template Get<2, 1>(M1) * Wrap1::template Get<1, 2>(M1));
Wrap2::template Get<1, 0>(M2) = -detInv *
(Wrap1::template Get<1, 0>(M1) * Wrap1::template Get<2, 2>(M1) -
Wrap1::template Get<2, 0>(M1) * Wrap1::template Get<1, 2>(M1));
Wrap2::template Get<2, 0>(M2) = detInv *
(Wrap1::template Get<1, 0>(M1) * Wrap1::template Get<2, 1>(M1) -
Wrap1::template Get<2, 0>(M1) * Wrap1::template Get<1, 1>(M1));
Wrap2::template Get<0, 1>(M2) = -detInv *
(Wrap1::template Get<0, 1>(M1) * Wrap1::template Get<2, 2>(M1) -
Wrap1::template Get<2, 1>(M1) * Wrap1::template Get<0, 2>(M1));
Wrap2::template Get<1, 1>(M2) = detInv *
(Wrap1::template Get<0, 0>(M1) * Wrap1::template Get<2, 2>(M1) -
Wrap1::template Get<2, 0>(M1) * Wrap1::template Get<0, 2>(M1));
Wrap2::template Get<2, 1>(M2) = -detInv *
(Wrap1::template Get<0, 0>(M1) * Wrap1::template Get<2, 1>(M1) -
Wrap1::template Get<2, 0>(M1) * Wrap1::template Get<0, 1>(M1));
Wrap2::template Get<0, 2>(M2) = detInv *
(Wrap1::template Get<0, 1>(M1) * Wrap1::template Get<1, 2>(M1) -
Wrap1::template Get<1, 1>(M1) * Wrap1::template Get<0, 2>(M1));
Wrap2::template Get<1, 2>(M2) = -detInv *
(Wrap1::template Get<0, 0>(M1) * Wrap1::template Get<1, 2>(M1) -
Wrap1::template Get<1, 0>(M1) * Wrap1::template Get<0, 2>(M1));
Wrap2::template Get<2, 2>(M2) = detInv *
(Wrap1::template Get<0, 0>(M1) * Wrap1::template Get<1, 1>(M1) -
Wrap1::template Get<1, 0>(M1) * Wrap1::template Get<0, 1>(M1));
}
};
//=============================================================================
// Specialization for 1x1 matrices
template <class LayoutT>
class InvertMatrix<1, LayoutT>
{
public:
template <class MatrixT1, class MatrixT2>
static void Compute(const MatrixT1& M1, MatrixT2& M2)
{
M2[0] = 1.0 / M1[0];
}
};
//=============================================================================
// Specialization for 2x2 diagonal matrices
template <>
class InvertMatrix<2, vtkMatrixUtilities::Layout::Diag>
{
public:
template <class MatrixT1, class MatrixT2>
static void Compute(const MatrixT1& M1, MatrixT2& M2)
{
M2[0] = 1.0 / M1[0];
M2[1] = 1.0 / M1[1];
}
};
//=============================================================================
// Specialization for 3x3 diagonal matrices
template <>
class InvertMatrix<3, vtkMatrixUtilities::Layout::Diag>
{
public:
template <class MatrixT1, class MatrixT2>
static void Compute(const MatrixT1& M1, MatrixT2& M2)
{
M2[0] = 1.0 / M1[0];
M2[1] = 1.0 / M1[1];
M2[2] = 1.0 / M1[2];
}
};
//=============================================================================
// Class solving systems M*y = x for square matrices RowsT x ColsT.
// The template parameter LayoutT is a struct embedded in MatrixLayout
// This class is currently specialized for 1x1, 2x2 and 3x3 matrices
template <int RowsT, int ColsT, class LayoutT = vtkMatrixUtilities::Layout::Identity>
class LinearSolve;
//=============================================================================
// Specialization for 1x1 matrices
template <class LayoutT>
class LinearSolve<1, 1, LayoutT>
{
public:
template <class MatrixT, class VectorT1, class VectorT2>
static void Compute(const MatrixT& M, const VectorT1& x, VectorT2& y)
{
y[0] = x[0] / M[0];
}
};
//=============================================================================
// Specialization for 2x2 matrices
template <class LayoutT>
class LinearSolve<2, 2, LayoutT>
{
public:
template <class MatrixT, class VectorT1, class VectorT2>
static void Compute(const MatrixT& M, const VectorT1& x, VectorT2& y)
{
using Scalar = typename vtkMatrixUtilities::ScalarTypeExtractor<MatrixT>::value_type;
using Wrap = vtkMatrixUtilities::Wrapper<2, 2, MatrixT, LayoutT>;
Scalar detInv = 1.0 / Determinant<2, LayoutT>::Compute(M);
y[0] = (x[0] * Wrap::template Get<1, 1>(M) - x[1] * Wrap::template Get<0, 1>(M)) * detInv;
y[1] = (-x[0] * Wrap::template Get<1, 0>(M) + x[1] * Wrap::template Get<0, 0>(M)) * detInv;
}
};
//=============================================================================
// Specialization for 3x3 matrices
template <class LayoutT>
class LinearSolve<3, 3, LayoutT>
{
public:
template <class MatrixT, class VectorT1, class VectorT2>
static void Compute(const MatrixT& M, const VectorT1& x, VectorT2& y)
{
using Scalar = typename vtkMatrixUtilities::ScalarTypeExtractor<MatrixT>::value_type;
using Wrap = vtkMatrixUtilities::Wrapper<3, 3, MatrixT, LayoutT>;
Scalar detInv = 1.0 /
(Wrap::template Get<0, 0>(M) *
(Wrap::template Get<1, 1>(M) * Wrap::template Get<2, 2>(M) -
Wrap::template Get<2, 1>(M) * Wrap::template Get<1, 2>(M)) -
Wrap::template Get<0, 1>(M) *
(Wrap::template Get<1, 0>(M) * Wrap::template Get<2, 2>(M) -
Wrap::template Get<2, 0>(M) * Wrap::template Get<1, 2>(M)) +
Wrap::template Get<0, 2>(M) *
(Wrap::template Get<1, 0>(M) * Wrap::template Get<2, 1>(M) -
Wrap::template Get<2, 0>(M) * Wrap::template Get<1, 1>(M)));
y[0] = detInv *
(x[0] *
(Wrap::template Get<1, 1>(M) * Wrap::template Get<2, 2>(M) -
Wrap::template Get<2, 1>(M) * Wrap::template Get<1, 2>(M)) -
x[1] *
(Wrap::template Get<0, 1>(M) * Wrap::template Get<2, 2>(M) -
Wrap::template Get<2, 1>(M) * Wrap::template Get<0, 2>(M)) +
x[2] *
(Wrap::template Get<0, 1>(M) * Wrap::template Get<1, 2>(M) -
Wrap::template Get<1, 1>(M) * Wrap::template Get<0, 2>(M)));
y[1] = detInv *
(-x[0] *
(Wrap::template Get<1, 0>(M) * Wrap::template Get<2, 2>(M) -
Wrap::template Get<2, 0>(M) * Wrap::template Get<1, 2>(M)) +
x[1] *
(Wrap::template Get<0, 0>(M) * Wrap::template Get<2, 2>(M) -
Wrap::template Get<2, 0>(M) * Wrap::template Get<0, 2>(M)) -
x[2] *
(Wrap::template Get<0, 0>(M) * Wrap::template Get<1, 2>(M) -
Wrap::template Get<1, 0>(M) * Wrap::template Get<0, 2>(M)));
y[2] = detInv *
(x[0] *
(Wrap::template Get<1, 0>(M) * Wrap::template Get<2, 1>(M) -
Wrap::template Get<2, 0>(M) * Wrap::template Get<1, 1>(M)) -
x[1] *
(Wrap::template Get<0, 0>(M) * Wrap::template Get<2, 1>(M) -
Wrap::template Get<2, 0>(M) * Wrap::template Get<0, 1>(M)) +
x[2] *
(Wrap::template Get<0, 0>(M) * Wrap::template Get<1, 1>(M) -
Wrap::template Get<1, 0>(M) * Wrap::template Get<0, 1>(M)));
}
};
//=============================================================================
// Specialization for 2x2 diagonal matrices
template <>
class LinearSolve<2, 2, vtkMatrixUtilities::Layout::Diag>
{
public:
template <class MatrixT, class VectorT1, class VectorT2>
static void Compute(const MatrixT& M, const VectorT1& x, VectorT2& y)
{
y[0] = x[0] / M[0];
y[1] = x[1] / M[1];
}
};
//=============================================================================
// Specialization for 3x3 diagonal matrices
template <>
class LinearSolve<3, 3, vtkMatrixUtilities::Layout::Diag>
{
public:
template <class MatrixT, class VectorT1, class VectorT2>
static void Compute(const MatrixT& M, const VectorT1& x, VectorT2& y)
{
y[0] = x[0] / M[0];
y[1] = x[1] / M[1];
y[2] = x[2] / M[2];
}
};
VTK_ABI_NAMESPACE_END
} // namespace vtkMathPrivate
#endif
|