1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
/*=========================================================================
Program: Visualization Toolkit
Module: TestPlane.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkFloatArray.h"
#include "vtkMath.h"
#include "vtkMathUtilities.h"
#include "vtkNew.h"
#include "vtkPlane.h"
#include "vtkPoints.h"
#include "vtkSmartPointer.h"
#include <limits>
#ifndef ABS
#define ABS(x) ((x) < 0 ? -(x) : (x))
#endif
template <class A>
bool fuzzyCompare1D(A a, A b)
{
return ABS(a - b) < std::numeric_limits<A>::epsilon();
}
template <class A>
bool fuzzyCompare3D(A a[3], A b[3])
{
return fuzzyCompare1D(a[0], b[0]) && fuzzyCompare1D(a[1], b[1]) && fuzzyCompare1D(a[2], b[2]);
}
int TestPlane(int, char*[])
{
// Test ProjectVector (vector is out of plane)
{
vtkSmartPointer<vtkPlane> plane = vtkSmartPointer<vtkPlane>::New();
plane->SetOrigin(0.0, 0.0, 0.0);
plane->SetNormal(0, 0, 1);
std::cout << "Testing ProjectVector" << std::endl;
double v[3] = { 1, 2, 3 };
double projection[3];
double correct[3] = { 1., 2., 0 };
plane->ProjectVector(v, projection);
if (!fuzzyCompare3D(projection, correct))
{
std::cerr << "ProjectVector failed! Should be (1., 2., 0) but it is (" << projection[0] << " "
<< projection[1] << " " << projection[2] << ")" << std::endl;
return EXIT_FAILURE;
}
}
// Test ProjectVector where vector is already in plane
{
vtkSmartPointer<vtkPlane> plane = vtkSmartPointer<vtkPlane>::New();
plane->SetOrigin(0.0, 0.0, 0.0);
plane->SetNormal(0, 0, 1);
std::cout << "Testing ProjectVector" << std::endl;
double v[3] = { 1, 2, 0 };
double projection[3];
double correct[3] = { 1., 2., 0 };
plane->ProjectVector(v, projection);
if (!fuzzyCompare3D(projection, correct))
{
std::cerr << "ProjectVector failed! Should be (1., 2., 0) but it is (" << projection[0] << " "
<< projection[1] << " " << projection[2] << ")" << std::endl;
return EXIT_FAILURE;
}
}
// Test ProjectVector where vector is orthogonal to plane
{
vtkSmartPointer<vtkPlane> plane = vtkSmartPointer<vtkPlane>::New();
plane->SetOrigin(0.0, 0.0, 0.0);
plane->SetNormal(0, 0, 1);
std::cout << "Testing ProjectVector" << std::endl;
double v[3] = { 0, 0, 1 };
double projection[3];
double correct[3] = { 0., 0., 0. };
plane->ProjectVector(v, projection);
if (!fuzzyCompare3D(projection, correct))
{
std::cerr << "ProjectVector failed! Should be (0., 0., 0) but it is (" << projection[0] << " "
<< projection[1] << " " << projection[2] << ")" << std::endl;
return EXIT_FAILURE;
}
}
{
vtkNew<vtkPlane> plane;
plane->SetOrigin(0.0, 0.0, 0.0);
plane->SetNormal(0.0, 0.0, 1.0);
vtkIdType nPointsPerDimension = 11;
vtkIdType nPoints = std::pow(nPointsPerDimension, 3);
vtkNew<vtkPoints> points;
points->SetNumberOfPoints(nPoints);
// Generate a grid of points
float in[3];
float minX = -1.0f, minY = -1.0f, minZ = -1.0f;
float increment = 2.0f / (static_cast<float>(nPointsPerDimension) - 1.0f);
vtkIdType pos = 0;
for (int z = 0; z < nPointsPerDimension; ++z)
{
in[2] = minZ + static_cast<float>(z) * increment;
for (int y = 0; y < nPointsPerDimension; ++y)
{
in[1] = minY + static_cast<float>(y) * increment;
for (int x = 0; x < nPointsPerDimension; ++x)
{
in[0] = minX + static_cast<float>(x) * increment;
points->SetPoint(pos++, in);
}
}
}
assert(pos == nPoints);
vtkFloatArray* input = vtkArrayDownCast<vtkFloatArray>(points->GetData());
vtkNew<vtkFloatArray> arrayOutput;
arrayOutput->SetNumberOfComponents(1);
arrayOutput->SetNumberOfTuples(nPoints);
std::cout << "Testing FunctionValue:\n";
// calculate function values with the vtkDataArray interface
plane->FunctionValue(input, arrayOutput);
// Calculate the same points using a loop over points.
vtkNew<vtkFloatArray> loopOutput;
loopOutput->SetNumberOfComponents(1);
loopOutput->SetNumberOfTuples(nPoints);
for (vtkIdType pt = 0; pt < nPoints; ++pt)
{
double x[3];
x[0] = input->GetTypedComponent(pt, 0);
x[1] = input->GetTypedComponent(pt, 1);
x[2] = input->GetTypedComponent(pt, 2);
loopOutput->SetTypedComponent(pt, 0, plane->FunctionValue(x));
}
for (vtkIdType i = 0; i < nPoints; ++i)
{
if (!vtkMathUtilities::FuzzyCompare(
arrayOutput->GetTypedComponent(i, 0), loopOutput->GetTypedComponent(i, 0)))
{
std::cerr << "Array and point interfaces returning different results at index " << i << ": "
<< arrayOutput->GetTypedComponent(i, 0) << " vs "
<< loopOutput->GetTypedComponent(i, 0) << '\n';
return EXIT_FAILURE;
}
}
}
return EXIT_SUCCESS;
}
|